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Abstract

This thesis presents the idea of volunteer computing, which allows high-performance paral-
lel computing networks to be formed easily, quickly, and inexpensively by enabling ordi-
nary Internet users to share their computers’ idle processing power without needing expert
help. In recent years, projects such as SETI@home have demonstrated the great potential
power of volunteer computing. In this thesis, we identify volunteer computing’s further
potentials, and show how these can be achieved.

We present the Bayanihan system for web-based volunteer computing. Using Java ap-
plets, Bayanihan enables users to volunteer their computers by simply visiting a web page.
This makes it possible to set up parallel computing networks in a matter of minutes com-
pared to the hours, days, or weeks required by traditional NOW and metacomputing sys-
tems. At the same time, Bayanihan provides a flexible object-oriented software framework
that makes it easy for programmers to write various applications, and for researchers to
address issues such as adaptive parallelism, fault-tolerance, and scalability.

Using Bayanihan, we develop a general-purpose runtime system and APIs, and show
how volunteer computing’s usefulness extends beyond solving esoteric mathematical
problems to other, more practical, master-worker applications such as image rendering, dis-
tributed web-crawling, genetic algorithms, parametric analysis, and Monte Carlo simula-
tions. By presenting a new API using the bulk synchronous parallel (BSP) model, we further
show that contrary to popular belief and practice, volunteer computing need not be limited
to master-worker applications, but can be used for coarse-grain message-passing programs
as well.

Finally, we address the new problem of maintaining reliability in the presence of mali-
cious volunteers. We present and analyze traditional techniques such as voting, and new
ones such as spot-checking, encrypted computation, and periodic obfuscation. Then, we show
how these can be integrated in a new idea called credibility-based fault-tolerance, which uses
probability estimates to limit and direct the use of redundancy. We validate this new idea
with parallel Monte Carlo simulations, and show how it can achieve error rates several
orders-of-magnitude smaller than traditional voting for the same slowdown.

Thesis Supervisor: Stephen A. Ward
Title: Professor of Electrical Engineering and Computer Science
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my old roommate and good friend.

Very special thanks to my friends from Catholic Fellowship. CF has truly been a mira-
cle. Since it started in 1995, it has changed my life at MIT. I remember walking to campus
one day and catching myself feeling the same happy feeling I feel when going to church.
Strange thought, but true. Because of CF, I now see MIT as a place of prayer – sometimes
even more than a place of study. Thanks to all my friends, especially to Danilo Almeida,
Br. Nick Austriaco, Lawrence Chang, Sunil Konath, Desmond and Beata Lim, Marissa
Long, Mike Lopez, Victor Luchangco, Terri and Nick Matsakis, Robert Palazzolo, Br. Dar-
ren Pierre, George Toolan, and Johan van Biesen, for all the times they have shared my
joys and sorrows, and shared theirs with me as well. They have been instruments of God’s
peace and love to me, and I have grown a lot because of them.

Aside from my friends from CF, God has also sent me good shepherds to strengthen,
guide, and encourage me along my spiritual journey. First, I would like to thank Fr. Tom
Holahan, who gave me much support and guidance while he was at MIT. Second, and
most especially, I would like to thank Fr. John Ullrich, OFM, my spiritual director and
friend, who has supported me, guided me, and been with me through the best and worst
times of my spiritual life these past three years. He has taught me the wonders and mys-
teries of God’s love and kindness, and has done so, not only through his kind and wise
words, but even more through the example of his life. In Fr. John, I can catch a glimpse of
God’s own kindness and love, and for this I am truly grateful.

Finally, I would like to thank my dearest friend, and God’s most wonderful gift to me,
Michelle Charles. Michelle has been with me through the hardest times of my stay at MIT,
and has made these times also the happiest. My life has truly been so much more joyful
since I have met her, and I feel so blessed and thankful to God whenever I think of her.
Being with her has made me grow and has brought me closer to God, and through her, I
have really felt God’s love. I love her very, very much, and I can’t wait to start sharing the
rest of our lives together, learning, loving, and growing together in God’s love.

As I end here, I would like to thank God again, who has given all these blessings, and

9



without whose grace none of this would have been possible. It always amazes me how
God’s plans for us are so much better than we can ever imagine ourselves. So now, I look
forward with much joy and anticipation to what He has planned next for my life. Thank
you so much, Lord!

10



Contents

1 Introduction 19
1.1 Toward Electronic Bayanihan . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Potentials and Challenges 29
2.1 What is Volunteer Computing? . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Metacomputing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Volunteer Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Potential Forms of Volunteer Computing . . . . . . . . . . . . . . . . . . . . 32
2.2.1 True Volunteer Computing . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2 Private Volunteer Computing . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Collaborative Volunteer Computing . . . . . . . . . . . . . . . . . . . 35
2.2.4 Commercial Volunteer Computing . . . . . . . . . . . . . . . . . . . . 36
2.2.5 NOIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Research Issues and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.3 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 A Taxonomy of Volunteer Computing Systems . . . . . . . . . . . . . . . . . 43
2.5 Context and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 The Bayanihan Web-based Volunteer Computing System 45
3.1 Web-based and Java-based Volunteer Computing . . . . . . . . . . . . . . . 45

3.1.1 Limitations of Application-based Systems . . . . . . . . . . . . . . . . 45
3.1.2 Web-based and Java-based Systems . . . . . . . . . . . . . . . . . . . 46

3.2 The Bayanihan Web-based Volunteer Computing System . . . . . . . . . . . 48
3.2.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Multi-level Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.4 Using the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Ease-of-Use and Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Volunteering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Watcher Applets and Interactive Parallel Computing . . . . . . . . . 53
3.3.3 Practical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Programmability and Applicability: Writing Applications . . . . . . . . . . . 55

11



3.4.1 The Generic Master-Worker Runtime System . . . . . . . . . . . . . . 55
3.4.2 Writing Applications: The Basic APIs . . . . . . . . . . . . . . . . . . 57
3.4.3 Application Frameworks and Other APIs . . . . . . . . . . . . . . . . 59

3.5 Developing Generic Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 Adaptive Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Master-Worker Style Applications 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Brute-Force Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Example: Brute-Force Factoring . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Example: RC5 Decryption . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Image Rendering and Processing . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.1 Example: Interactive Mandelbrot Set Renderer . . . . . . . . . . . . . 73

4.4 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.1 Framework Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.2 Example: Function Optimization . . . . . . . . . . . . . . . . . . . . . 77

4.5 Communicationally Parallel Applications . . . . . . . . . . . . . . . . . . . . 77
4.5.1 Example: Distributed Web Crawling . . . . . . . . . . . . . . . . . . . 78
4.5.2 Other Possible Applications . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Parametric Analysis and Monte Carlo Simulations . . . . . . . . . . . . . . . 79
4.6.1 Writing Parametric Analysis Applications . . . . . . . . . . . . . . . . 80
4.6.2 Writing Monte Carlo Applications . . . . . . . . . . . . . . . . . . . . 80
4.6.3 Example: Computing π . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6.4 Example: Fault-Tolerance Simulator . . . . . . . . . . . . . . . . . . . 82

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 BSP as a Programming Model for Volunteer Computing 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 The BSP Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Implementing the BSP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 The Bayanihan Master-Worker Based Implementation . . . . . . . . 89
5.3.2 Adaptive Parallelism and Fault-Tolerance . . . . . . . . . . . . . . . . 90

5.4 Writing Bayanihan BSP programs . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.1 The Bayanihan BSP Methods . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.2 Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Improving Bayanihan BSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.1 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.2 Other Mechanisms Supporting Caching . . . . . . . . . . . . . . . . . 101
5.6.3 Other Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.7.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

12



6 Reliability in the Presence of Malicious Volunteers 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Overview of Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Application Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.2 Authentication, Encryption, and Obfuscation . . . . . . . . . . . . . . 109
6.2.3 Redundancy and Randomization . . . . . . . . . . . . . . . . . . . . . 110

6.3 Voting and Spot-checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.1 Models and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.2 Majority Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.3 Spot-Checking with Blacklisting . . . . . . . . . . . . . . . . . . . . . 115
6.3.4 Spot-checking without Blacklisting . . . . . . . . . . . . . . . . . . . . 118
6.3.5 Combining Spot-Checking and Voting . . . . . . . . . . . . . . . . . . 120

6.4 Credibility-based Fault-Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4.1 Overview: Credibility and the Credibility Threshold Principle . . . . 121
6.4.2 Calculating Credibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.3 Using Credibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.5.1 The Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7 Conclusion 145
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.3 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A Sample Code 151
A.1 Brute-Force Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.1.1 Work Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.1.2 Result and Related Objects . . . . . . . . . . . . . . . . . . . . . . . . 153
A.1.3 Config and Request Object . . . . . . . . . . . . . . . . . . . . . . . . 155
A.1.4 Watcher GUI Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.1.5 Program Object (Passive Style) . . . . . . . . . . . . . . . . . . . . . . 160
A.1.6 Program Object (Active Style) . . . . . . . . . . . . . . . . . . . . . . . 163

A.2 Computing Pi through Monte Carlo Methods . . . . . . . . . . . . . . . . . . 167
A.2.1 Work Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.2.2 Result Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.2.3 Statistics Collector Object . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.2.4 Program Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.3 Fault-tolerance Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
A.3.1 Sample Program Object . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B Encrypted Computation and Obfuscation 175
B.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.2.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
B.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
B.2.3 Possible Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

13



B.3 Encrypted Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
B.3.1 Basic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
B.3.2 Sander’s and Tschudin’s work . . . . . . . . . . . . . . . . . . . . . . 179
B.3.3 Critique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.4 Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
B.4.1 Obfuscation Transformations . . . . . . . . . . . . . . . . . . . . . . . 183
B.4.2 Critique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.5 Time-limited Blackbox Security . . . . . . . . . . . . . . . . . . . . . . . . . . 190
B.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
B.5.2 Critique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.6 Suggestions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 194
B.6.1 Redundancy and Randomization . . . . . . . . . . . . . . . . . . . . . 195
B.6.2 Combining Encrypted Computation and Obfuscation . . . . . . . . . 196

B.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

14



List of Figures

1-1 Bayanihan in art: Bayanihan. Mural by Carlos Francisco. . . . . . . . . . . . . 20
1-2 Bayanihan in real life: Moving a House. Photograph by Nik Wheeler. . . . . . 20

2-1 A Taxonomy of Volunteer Computing Systems. . . . . . . . . . . . . . . . . . 43

3-1 A Bayanihan system with worker and watcher clients. . . . . . . . . . . . . . 49
3-2 Volunteering as a worker using Bayanihan. . . . . . . . . . . . . . . . . . . . 52
3-3 Watching results and controlling the computation using a watcher applet. . 54
3-4 Master-worker runtime layer components and interactions. . . . . . . . . . . 56
3-5 Eager scheduling in Bayanihan. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3-6 Two approaches to fault-tolerance: (a) Majority Voting, (b) Spot-checking. . 61
3-7 A screenshot of the Mandelbrot application with spot-checking enabled. . . 64
3-8 Using volunteer servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4-1 The master-worker model of computation. . . . . . . . . . . . . . . . . . . . 70
4-2 Brute-force factoring: Speedup plot. . . . . . . . . . . . . . . . . . . . . . . . 72
4-3 A screenshot of the Mandelbrot application in action. . . . . . . . . . . . . . 74
4-4 Mandelbrot application: Speedup plot. . . . . . . . . . . . . . . . . . . . . . . 75
4-5 Pseudo-code for a basic genetic algorithm. . . . . . . . . . . . . . . . . . . . . 76
4-6 The distributed web-crawler experiment. . . . . . . . . . . . . . . . . . . . . 78
4-7 Fault-tolerance simulator: Speedup relative to the fastest machine. . . . . . 83
4-8 Fault-tolerance simulator: Efficiency. . . . . . . . . . . . . . . . . . . . . . . . 84
4-9 Fault-tolerance simulator: Normalized speedup. . . . . . . . . . . . . . . . . 84

5-1 A BSP superstep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5-2 BSP pseudo-code for a two-step cyclic shift. . . . . . . . . . . . . . . . . . . . 88
5-3 Implementing BSP on top of the Bayanihan master-worker framework. . . . 89
5-4 BSP pseudo-code without code-skipping. . . . . . . . . . . . . . . . . . . . . 94
5-5 Transformed BSP pseudo-code with code skipping. . . . . . . . . . . . . . . 94
5-6 Code for bsp sync() , bsp step() , bsp cont() . . . . . . . . . . . . . . . 95
5-7 BSP pseudo-code with code skipping and #define macros. . . . . . . . . . 96
5-8 Bayanihan BSP code for matrix multiplication. . . . . . . . . . . . . . . . . . 98
5-9 Bayanihan BSP applications: Speedup relative to sequential version. . . . . 99

6-1 Eager scheduling work pool with m-first majority voting. . . . . . . . . . . . 113
6-2 Majority Voting: theoretical error rate for various values of ϕ and m. . . . . 114
6-3 Majority voting: theoretical slowdown required to achieve target error rates,

given various fault rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6-4 Spot-checking with blacklisting: theoretical average error rate (εscbl). . . . . 117

15



6-5 Spot-checking without blacklisting: theoretical error rate with long-staying
saboteurs (err scnb). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6-6 A credibility-enhanced eager scheduling work pool. . . . . . . . . . . . . . . 122
6-7 m-ahead margin-based voting: theoretical error rate for various values of ϕ

and m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6-8 Majority voting: slowdown vs. maximum final error rate at various values

of f and m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6-9 Spot-checking with batch-limited blacklisting: simulated and theoretical er-

ror rates vs. s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6-10 Spot-checking without blacklisting: simulated error rates and theoretical

upper bound (f/ql) vs. length-of-stay l. . . . . . . . . . . . . . . . . . . . . . 134
6-11 Combining voting and spot-checking with blacklisting: simulated and the-

oretical error rate vs. s at q = 0.1, N = 10000, P = 200 for f = 0.5, 0.2, 0.1
and (a) m = 2, (b) m = 3. The solid curves represent theoretically predicted
error rates using the actual observed values of n, while the dashed curves
represent a purely theoretical predictions assuming n = m(N/P )/(1− q). . 135

6-12 Combining voting and spot-checking without blacklisting: maximum sim-
ulated error rate vs. l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6-13 Credibility-based voting with spot-checking and batch-limited blacklisting:
error rate vs. s at f = {0.2, 0.1, 0.05}. . . . . . . . . . . . . . . . . . . . . . . . 136

6-14 Credibility-based voting with spot-checking and batch-limited blacklisting:
average slowdown vs. maximum final error rate at various values of f . . . . 137

6-15 Credibility-based voting with spot-checking and batch-limited blacklisting:
slowdown vs. maximum final error rate for first and tenth batches. . . . . . 137

6-16 Credibility-based voting with spot-checking, no blacklisting: error rate vs.
length-of-stay l averaged over 10 batches. . . . . . . . . . . . . . . . . . . . . 138

6-17 Credibility-based voting with spot-checking, no blacklisting: error rate vs.
length-of-stay l for: first and tenth batches. . . . . . . . . . . . . . . . . . . . 138

6-18 Credibility-based voting with spot-checking, no blacklisting: error rate vs. s
at f = {0.2, 0.1, 0.05}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6-19 Credibility-based voting with spot-checking, no blacklisting: average slow-
down vs. maximum final error rate at various values of ϑ and f . . . . . . . . 140

6-20 Credibility-based voting with spot-checking, no blacklisting: slowdown vs.
maximum final error rate for first batch and tenth batches. . . . . . . . . . . 140

6-21 Using credibility-based voting for spot-checking, no blacklisting: error rate
vs. s at f = 0.2, 0.1, 0.05 for various thresholds ϑ. . . . . . . . . . . . . . . . . 141

6-22 Using credibility-based voting for spot-checking, no blacklisting: average
slowdown vs. maximum final error rate at various values of ϑ and f . . . . . 142

6-23 Using credibility-based voting for spot-checking, no blacklisting: slowdown
vs. maximum final error rate for first and tenth batches. . . . . . . . . . . . . 142

B-1 Programs can be attacked in hostile environments. . . . . . . . . . . . . . . . 176
B-2 Computing with encrypted functions (CEF). . . . . . . . . . . . . . . . . . . 178
B-3 Computing with encrypted data (CED). . . . . . . . . . . . . . . . . . . . . . 179
B-4 Examples of trivial opaque constructs. . . . . . . . . . . . . . . . . . . . . . . 186
B-5 CED using obfuscation as an encryption scheme. . . . . . . . . . . . . . . . . 197
B-6 Computing a=b+c;b=b+1;c=a*b; using obfuscated data. . . . . . . . . . 198

16



List of Tables

3.1 Results from preliminary fault-tolerance experiments. . . . . . . . . . . . . . 63
3.2 Running the Mandelbrot application with a volunteer server. . . . . . . . . . 65

4.1 Brute-force factoring: Speedup with 8 workers. . . . . . . . . . . . . . . . . . 72
4.2 Brute-force factoring: comparing C and Java speeds. . . . . . . . . . . . . . . 72
4.3 Mandelbrot application: comparing C and Java. . . . . . . . . . . . . . . . . 75
4.4 Genetic Algorithm application: Running times (in ms) and speedups. . . . . 77
4.5 Distributed web-crawler: Timing measurements . . . . . . . . . . . . . . . . 79

5.1 Basic Bayanihan BSP methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Basic BSPMainWork methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

17



18



Chapter 1

Introduction

1.1 Toward Electronic Bayanihan

In the countryside villages of old in the Philippines, when a family moved to a new place,
they literally moved their whole house with them. First, they would place long bamboo
poles under their house (which was usually elevated by stilts). Once this framework was
in place, their friends and neighbors would then gather in numbers under it, and carry the
house on their shoulders to its new location. This tradition, called bayanihan (pronounced
“buy-uh-nee-hun”), has been a favorite subject of artists (see Fig. 1-1) and is still practiced
today in some rural areas (see Fig. 1-2). More than a way to move houses, bayanihan has
come to be a dramatic symbol of the power of cooperation. Like its counterparts in other
cultures, including gotong royong in Indonesia and Malaysia [60], harambee in Africa [103],
and barn raising in the United States [161], bayanihan reminds us that seemingly impossible
feats can become possible through the concerted effort of many people with a common
goal and a sense of unity.

This thesis seeks to bring the bayanihan spirit into the world of computing by presenting
and developing the idea of volunteer computing, a newly emerging form of computing that
makes it easy for people on the Internet to pool their existing computer resources, and
work together to solve large computational problems that no one can solve alone.

Volunteer computing works by enabling people to share their computers’ idle process-
ing power through easy-to-use and highly accessible software that does not require expert
help or technical knowledge. Like its predecessors, networks-of-workstations (NOWs) [7]
and metacomputing [102], volunteer computing is a form parallel computing. It allows a
large computational problem to be solved much faster than possible on a single computer
by making use of many networked computers “in parallel” working at the same time on
different parts of the same problem. Unlike other forms of parallel computing, however,
volunteer computing does not require system administrators to install complex software
or create special accounts on users’ machines. A user wanting to volunteer his or her ma-
chine would be able to do so by simply downloading and installing a screensaver or, even
more easily, by visiting a web page.

By making it easy for people to volunteer their computers by themselves, volunteer
computing creates many new possibilities. Because it allows even casual users with no
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Figure 1-1: Bayanihan in art: Bayanihan. Mural by Carlos Francisco, 1962, courtesy of
Unilab Philippines, Inc.

Figure 1-2: Bayanihan in real life: Moving a House. Photograph by Nik Wheeler, cour-
tesy of corbis.com . Another photograph of real-life bayanihan can be seen in National
Geographic magazine [101].
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technical knowledge to volunteer their machines, volunteer computing makes it possible
to build parallel computing networks much larger and much more quickly than possi-
ble before. Potentially, such networks can involve thousands, even millions of computers
distributed around the world, and can achieve performance levels far beyond that of any
current supercomputer. Furthermore, since volunteer computing does not require new
hardware to be purchased, it can also provide affordable supercomputing capabilities to
financially constrained organizations such as small universities, as well as companies, in-
stitutions, and universities in developing countries. In fact, since volunteer computing
makes it easy for organizations to pool their resources, it opens new possibilities for col-
laborative research between institutions around the world.

Recently, highly successful volunteer computing projects have given us a glimpse of the
potentials of volunteer computing. The first of these to gain widespread publicity was dis-
tributed.net [40], a cooperative group of programmers and thousands of volunteers around
the world who, in October, 1997, solved the $10,000 RSA RC-56 decryption challenge after
trying 34 quadrillion different keys [40]. At the time the search ended, distributed.net had
over 4,000 active volunteer teams (having anywhere from one to hundreds of computers
each), and was searching through keys at a rate of over 7 billion per second – equivalent
to the combined power of about 26,000 high-end PCs at that time. Over the span of the
250 days it took to crack the code, they received results from as many as 500,000 different
computers (unique network addresses) around the world [41]. Even more impressive is
the SETI@home project for searching massive amounts of radio telescope data for signs of
extraterrestrial intelligence [137]. SETI@home was started in May 1999, and today has had
2.7 million users registered so far, with currently over 500,000 active users (users who have
submitted a result in the last 2 weeks) providing a total of over 15 TeraFLOPs of comput-
ing power [85]. It is currently faster than the fastest single supercomputer in the world,
IBM’s ASCI White, which runs at around 12 TeraFLOPs, and is considerably less expen-
sive, having cost SETI only $500,000 so far, compared to ASCI White’s $110 million price
tag [138].

1.2 Thesis Goals

Although already very impressive, these examples are just the tip of the iceberg. Volunteer
computing has a lot more to offer if we can go beyond application-specific systems such as
these, and develop general-purpose technology to implement a wider range of applications
and address the many new technical challenges that volunteer computing brings. This the-
sis aims to paint a bigger picture of volunteer computing’s potentials, and show how these
can be achieved by developing ways of addressing key concerns and technical challenges
in volunteer computing.

Specifically, in this thesis, we will demonstrate how these potentials extend beyond
what existing systems have shown by showing how volunteer computing:

1. is a whole new form of computing, not limited to public and unpaid true volunteer
systems such as SETI@home and distributed.net, but including private as well as
commercial networks as well,
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2. can be made easier for volunteers and programmers alike, thus encouraging more
volunteers to join, as well as enabling programmers to write more useful applica-
tions,

3. need not be limited to esoteric scientific and mathematical problems but can be ap-
plied to a wide range of useful applications,

4. need not be limited to “embarassingly parallel” or master-worker style applications,
as current belief and practice may suggest, but can be used for other coarse-grain
applications that may use more complex communication patterns, and

5. can be made reliable even in the presence of malicious volunteers without overly
sacrificing performance.

In doing so, we do not aim to compete with other volunteer computing systems such
as SETI@home and distributed.net, but to complement them by encouraging their further
use and by presenting new ideas, techniques, and tools that developers of these systems
can apply to their own systems to help achieve their full potentials.

1.3 Thesis Overview

The rest of this thesis is roughly divided into chapters according to these major goals. In
this section, we give an overview of each chapter.

Potentials and Challenges

Chapter 2 presents the motivations for the rest of this thesis. In this chapter, we identify the
further potentials of volunteer computing, as well as the new research challenges involved
in realizing these potentials.

In the first half of this chapter, we present the background and motivation for volunteer
computing, and define it as a new form of parallel computing that focuses on maximizing
the ease with which people can volunteer their machines. We then show how volunteer
computing need not be limited to “true volunteer” networks like SETI@home and dis-
tributed.net, wherein the volunteers come from the general public and are unpaid, but
can take other forms as well, including private and collaborative “forced volunteer” net-
works, barter trade systems, commercial market-based systems, and NOIAs (networks of
information appliances). All these are made possible by the key idea of making it easy for
people to share their computers’ idle time.

In the second half of this chapter, we identify and discuss the important new research
issues that need to be addressed in building volunteer computing systems in general.
We begin by discussing the general technical issues of accessibility, applicability, and reli-
ability. Accessibility is concerned with making volunteer computing as easy, open, and
inviting to as many volunteers as possible, and involves issues in ease-of-use, platform-
independence, volunteer-side security, and user-interface design. Applicability is con-
cerned about making volunteer computing useful in the “real world”, and involves issues
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in programmability, adaptive parallelism, performance, and scalability. Reliability is con-
cerned about making volunteer computing work in the presence of faults and malicious
volunteers, and involves finding ways to protect against attacks from these volunteers
such as sabotage, cheating, and espionage. We also discuss economic issues which we do
not focus on in this thesis, but will play an important part in volunteer computing’s future
in commercial systems.

Tying together the two halves of this chapter, we present a taxonomy that classifies
these forms according to autonomy (whether or not volunteers can join and leave of their
own free will), anonymity (whether or not the volunteers are known and trusted by the
administrators), and altruism (whether or not volunteers expect to be compensated for
volunteering). This taxonomy allows us to identify the key research issues that call for
special attention in each form of volunteer computing.

While many others have also recognized the potentials and challenges of volunteer-
based parallel computing systems albeit under different names (e.g., [6, 12, 46, 56, 111] and
others), our own approach in this chapter is to present volunteer computing as a distinct
new form of computing, and to present a high-level map of the domain of this new form
of computing, as well as of the research terrain ahead for those who wish to explore it.

The Bayanihan Web-based Volunteer Computing System

In Chap. 3, we present the Bayanihan volunteer computing system, which simultaneously
addresses all these issues by making it easier not only for users to volunteer their machines,
but also for programmers to write volunteer computing software and for researchers to
develop, implement, and experiment with different ways to address the various technical
challenges in volunteer computing.

Bayanihan uses Java applets [59] to implement the idea of web-based volunteer comput-
ing, which enables users from anywhere on the Internet to volunteer their computers by
simply visiting a web page. By allowing users to volunteer without even having to install
software on their machines, and by taking advantage of Java’s platform-independence and
security, Bayanihan not only makes the process of volunteering easier and faster than in
other systems, but also allows us to accommodate a wider range of volunteers, including
casual users, users wary of security risks, and users of machines with operating systems
that do not allow them to install software. We demonstrate the benefits of web-based
volunteer computing by describing how Bayanihan has allowed us to set up parallel com-
puting networks in a matter of seconds or minutes (compared to the hours, days, or weeks
that it would take to install traditional NOW and metacomputing systems), and to use ma-
chines on which application-based volunteer computing software would have been diffi-
cult or impossible to install.

Bayanihan also uses Java to make it easier for programmers to write software. By
taking advantage of Java’s object-oriented features, Bayanihan provides a flexible general-
purpose software framework with multiple levels of extensibility. Through this frame-
work, Bayanihan not only allows programmers to write a variety of applications, but also
allows researchers to implement and experiment with different mechanisms for address-
ing technical issues in volunteer computing. We demonstrate the use of Bayanihan for ap-
plications by describing a general-purpose runtime system and application programming
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interfaces (APIs) for master-worker applications, which we use to implement a number of
applications presented in Chap. 4. Finally, we show how Bayanihan’s flexibility allows
programmers to do research on the principles of volunteer computing itself by describing
how we have used Bayanihan’s highly modular architecture to develop and experiment
with mechanisms for achieving adaptive parallelism, reliability, and scalability for master-
worker applications in general.

Master-Worker Style Applications

In Chap. 4, we present a number of master-worker style applications. These applications
are ideal for volunteer computing systems because they are coarse-grain and embarassingly
parallel, and thus work well even with slow Internet links, and can easily be made adap-
tively parallel. Here, we show that in addition to the esoteric mathematical and scientific
problems that volunteer computing systems are most well-known for solving today, many
other more practical applications fall under this category and can easily be implemented
on volunteer computing systems as well.

Using Bayanihan’s master-worker runtime system and APIs, we explore a wide range
of master-worker style applications, including brute-force search, image rendering, ge-
netic algorithms, communicationally parallel applications, parametric analysis, and Monte
Carlo simulations. For each of these classes of applications, we present general-purpose
mechanisms, APIs, and application frameworks that we have developed for implementing
applications in that class, and present specific example applications that demonstrate how
we have achieved useful speedups for these applications.

Among the most promising of these applications at present are those involving para-
metric analysis and Monte Carlo simulations, wherein the goal is to empirically observe
the behavior of hard-to-analyze systems by running a sequential simulation many times
under different, independent, combinations of parameters. Parallelizing these applications
by running the different parameter combinations on different machines at the same time
offers programmers a straightforward way to save time and thus experience the benefits
of volunteer computing. As a first-hand example, we show how we ourselves have used
Bayanihan to implement a parallel Monte Carlo simulator for studying the fault-tolerance
mechanisms we propose in Chap. 6, and show how the speedups we got from running this
simulator on up to 50 volunteer machines in parallel made our research possible.

BSP as a Programming Model for Volunteer Computing

In Chap. 5, we take applicability even further by showing how volunteer computing can
be used for an even wider range of applications than current popular belief and practice
would suggest. In particular, we show that volunteer computing need not be limited to
master-worker style and embarassingly parallel applications as it so far has been, but can
also be used for message-passing style applications as long as they are coarse-grain enough.

We do this by presenting a new programming interface based on the BSP (bulk syn-
chronous parallel) model. Like the traditional and popular message-passing model, and
unlike the master-worker model, BSP allows worker processes to exchange data with
each other, and thus supports a much wider range of applications. Unlike the traditional
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message-passing model, however, the BSP model does not let messages move immediately
but only moves them “in bulk” at specific synchronization points in time. This makes BSP
easier to implement on a variety of parallel computing architectures – including master-
worker style ones like Bayanihan and most other volunteer computing systems today.

In this chapter, we implement a Java-based API for writing BSP-style programs that
can run on Bayanihan’s master-worker runtime layer. This API allows us to write more
communicationally complex applications while still taking advantage of the adaptive par-
allelism, reliability, and scalability mechanisms we have developed for master-worker ap-
plications. It also makes writing master-worker style applications easier by giving pro-
grammers an SPMD (single-program multiple-data) style interface similar to that of most
message-passing systems today.

We demonstrate the use of this API by implementing a number of example applica-
tions. These show how the Bayanihan BSP API now allows programmers to write commu-
nicationally complex applications such as Jacobi iteration, which were previously difficult
or impossible to write for volunteer computing systems. At present, the performance and
scalability of our implementation is limited for some applications due to limitations in the
underlying runtime layer. However, these are expected to improve with future work on
mechanisms for periodic checkpointing and smart rollback, lazy migration and itinerant
processes, dataflow-style BSP, and possibly peer-to-peer communication. Meanwhile, the
BSP programming interface we have developed represents a significant improvement in
programmability and flexibility over current programming interfaces for volunteer-based
systems, and enables programmers to start porting and writing an even wider variety of
applications for volunteer computing systems than before.

Reliability in the Presence of Malicious Volunteers

In Chap. 6, we address the problem of assuring the correctness and security of a compu-
tation in the presence of malicious volunteers. This is a new problem unique to volunteer
computing, and not yet very well-studied. Thus, in this chapter, we present some of our
most unique and novel results.

This chapter is divided into three main parts. In the first part, we begin with an
overview of general approaches to this problem. First, we show how reliability can easily
be achieved by simply choosing to do applications that are either naturally fault-tolerant
or verifiable. Then, we give a high-level discussion on how authentication, encryption, and
obfuscation techniques can be used (whether or not our applications are naturally fault-
tolerant or verifiable) to reduce error rates by making it difficult for saboteurs to produce
bad results to begin with. Finally, we consider the use of redundancy and randomization in
cases where saboteurs are able to produce bad results despite these mechanisms.

In the second part, we focus on techniques based on redundancy and randomization.
We begin by analyzing the traditional technique of voting, and show how it reduces the
original error rate exponentially with redundancy (i.e., the number of times we repeat each
work object), and is thus useful in systems with low original error rates. For systems with
high original error rates, we propose the use of new mechanisms called spot-checking and
blacklisting, which we show reduces the error rate by a factor that is linear with the amount
of work to be done, while only increasing the total running time by a relatively small
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fraction of the original time, instead of by several multiples as in voting. By combining
voting and spot-checking, we show how we can exponentially shrink the already linearly
reduced error rate, and thus achieve error rates that are orders-of-magnitude smaller than
those offered by voting alone.

Finally, in the last part of this chapter, we generalize our results by presenting a new
technique called credibility-based fault-tolerance. In this technique, we estimate the credibility
of results and workers as the probability of their being correct given the results of using
voting, spot-checking, and other techniques. By then using these estimates to determine
whether a piece of work needs to be repeated or is credible enough to be accepted, we are
not only able to attain mathematically guaranteeable levels of correctness, but are also able
to do so with much smaller slowdown than possible with traditional voting techniques.

Using a parallel Monte Carlo simulator running on Bayanihan itself, we demonstrate
the effectivity of these techniques, and present surprising and encouraging results. In one
case, where we assume that saboteurs are Bernoulli processes and that each volunteer does
about 50 pieces of work in a batch, we show that even with as many as 20% of the volun-
teers being saboteurs, credibility-based fault-tolerance can limit the average error rate to
less than 1 in 106 with only a 2.5 times slowdown compared to a system with no fault-
tolerance. This is almost 105 times smaller than the error rate achievable with traditional
majority voting for the same slowdown. Furthermore, we can expect even smaller error
rates for larger jobs where workers do more pieces of work in a batch and therefore have a
higher chance of getting caught by spot-checking.

Related Work, Future Work, and Conclusion

Throughout this thesis, we cite related work as we go along. In addition, at the end of
some chapters, we present a section placing the results of the section in the context of
related work, and discussing possible future work. Finally, in Chap. 7, we conclude this
thesis by summarizing our results, and suggesting possible directions for future research.

Appendices

In addition to the main text, we have two appendices. Appendix A contains sample source
code for some applications described in Chap. 3 and Chap. 4. Appendix B is a survey and
critique paper, previously written separately [134], that studies the topic of protecting mo-
bile agents from malicious hosts. Although this paper is mostly concerned about applica-
tions in the field of mobile agents in general, such as those used in e-commerce systems,
the ideas presented here are directly applicable to volunteer computing systems where the
code run by the volunteers can be seens as mobile agents that can be attacked by a ma-
licious volunteer. In this paper, we survey techniques involving encrypted computation as
well as obfuscation (i.e., instruction scrambling). We also look into the idea of time-limited
blackbox security [71], which is very similar to our idea of periodic obfuscation. In the end,
we propose the use of some form of time-limited blackbox security or periodic obfusca-
tion using parameterizable obfuscation techniques, and suggest some ways that this can be
implemented.
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1.4 Contributions

In summary, the major contributions of this thesis include:

• General-purpose volunteer computing as a new form of computing. We were
among the first to identify the potential for a new form of computing distinguished
from traditional NOWs and metacomputing specifically by its emphasis on maximiz-
ing ease-of-use and accessibility for volunteers. We coined the term “volunteer com-
puting” in 1996 [131] to refer to it, and presented one of the first papers mapping out
the numerous possibilities that it creates [131, 132]. We were also among the first to
identify and promote the idea of web-based volunteer computing as a way of achiev-
ing even more accessibility and ease-of-use than the more common application-based
systems.

• The Bayanihan web-based volunteer computing system. Bayanihan was one of
the first general-purpose web-based volunteer computing systems using Java. It was
also among the first to use a remote object system (i.e., HORB) to simplify pro-
gramming, and the first to focus on maximizing flexibility and extensibility through
object-oriented design. This flexibility has allowed us not only to write a wide vari-
ety of applications, but also to explore a wide range of technical issues and develop
several new ideas and mechanisms for addressing them.

• The Bayanihan BSP programming interface. We were the first to identify the ap-
plicability of the BSP programming interface to volunteer computing systems in
particular, and the first to implement it in Java. In addition, since our BSP imple-
mentation requires only an underlying master-worker runtime system, it should be
implementable in other volunteer computing systems as well.

• Approaches to the problem of malicious volunteers. This thesis provides the most
comprehensive treatment to date of the new problem of dealing with malicious vol-
unteers. Here, we cover mechanisms ranging from encrypted computation and ob-
fuscation, to naturally fault-tolerant and verifiable applications, to voting and spot-
checking.

• Credibility-based fault-tolerance. This idea, one of our most unique and novel
ideas, provides system designers with a simple, but highly generalizable framework
for achieving mathematically guaranteeable error levels with minimal redundancy
and slowdown. It is not limited by the specific assumptions, mechanisms, and cred-
ibility metrics that we present in Chap. 6, but can be used under other assumptions
and with other mechanisms as long as the appropriate credibility estimates can be
derived.

In addition to these major contributions, some notable minor contributions include:

• NOIAs. We were the first to propose the idea of the NOIAs (networks of information
applicances), and coined the term NOIA.
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• Interactive parallel computing. Bayanihan was one of the first volunteer computing
systems to provide watcher applets that not only allow users to view the results of a
computation, but also allow them to control the computation even before a parallel
batch is finished.

• Communicationally parallel applications. We were one of the first to explore the
use of volunteer computing for communicationally parallel applications through our
distributed web-crawler application [133].

• Domain-specific application frameworks. In addition to providing general-purpose
APIs for master-worker applications, we also provide more specific frameworks for
particular classes of applications. In particular, we provide a framework that makes
it easy to write parallel Monte Carlo simulations and parametric analysis applica-
tions (see Sect. 4.6) by providing transparently parallel methods for doing multiple
Monte Carlo runs in parallel, and by providing efficient and easy-to-use classes for
gathering statistics.

• Pre-compiler free portable checkpointing. As part of the Bayanihan BSP API, we
developed a way to do checkpointing without the need for precompilers or any
changes to the Java virtual machine. The general programming constructs we have
developed can be used not only for writing BSP work objects for volunteer comput-
ing systems, but also for writing other Java code that may require checkpointing.
They may even be used in the future in non-Java code as well to provide portable
checkpointing.

In the end, all these just begin to explore the vast new field of volunteer computing
research. By presenting them here, it is our hope that they will serve as a starting point
and roadmap for further research into volunteer computing.



Chapter 2

Potentials and Challenges

In this chapter, we identify the potential benefits and applications of volunteer comput-
ing, as well as the various problems and challenges that need to be overcome in turning
these potentials into reality. We begin by comparing volunteer computing with more tra-
ditional forms of parallel computing, and proceed to identify the various potential forms
that volunteer computing systems can take and their potential benefits. We then identify
the various research issues involved in implementing volunteer computing systems, as
well as suggest possible ways to approach these problems.

2.1 What is Volunteer Computing?

2.1.1 Metacomputing

Volunteer computing is a variation on the idea of metacomputing – using a network of many
separate computers as if they were one large parallel machine, or metacomputer.

Metacomputing systems today primarily take the form of networks of workstations, or
NOWs [7], that allow people to pool together existing and mostly idle workstations in their
own local or institution-wide networks and use them to do parallel processing without
having to purchase an expensive supercomputer [48]. Global-scale NOWs, employing
computers geographically distributed around the world and communicating through the
Internet, have also been used with great success to solve large parallel problems as far back
as the early 1990’s [143, 91], and until today [40, 56, 158, 137, 117].

Unfortunately, most of these earlier projects have used ad hoc software systems. Typ-
ically, a subsystem for providing communication and coordination between machines in
the NOW had to be developed mostly from scratch as part of each project. Furthermore,
in some cases the systems were not even fully automatic. Participants had to manually
request jobs by email or ftp , load them into their computers, execute them, and again
manually submit the results [91].

Thus, while these software systems were successfully used to build NOWs containing
several thousands of workstations, doing so required a large amount of human effort in
terms of setting up, coordinating, and administering the system.

29
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PVM and MPI

Fortunately, this situation has been notably improved since the development of general-
purpose and cross-platform parallel processing systems such as Parallel Virtual Machine
(PVM) [54] and Message Passing Interface (MPI) [63] in the early 90’s. In such systems, the
amount of manual work required is reduced significantly by the runtime system, which
takes care of such things as automatically executing the appropriate code on each of the
processors involved, keeping track of existing processors, routing and delivering mes-
sages, etc. At the same time, programming is made much easier by a general-purpose
applications programming interface (API) which hides most of the details of the runtime
system, and allows the user to write parallel programs for NOWs using a relatively simple
high-level message-passing model. All this allows programmers to concentrate on writing
applications instead of worrying about low-level details.

Although systems like PVM and MPI make programming and setting-up NOWs sig-
nificantly easier than in earlier ad hoc systems, setup requirements still impose practical
limits on the size of NOWs that can be used with these systems. To perform a parallel
computation using PVM, for example, one must:

1. Install the PVM daemon on all machines to be used in the computation.

2. Compile the application binaries for each target architecture.

3. Distribute these binaries to all the machines (either by explicitly copying them, or by
using a shared file system).

4. Provide the owner of the computation with remote shell access (i.e., the ability to
execute shell functions and programs remotely) on all machines, to allow remote
execution of the PVM daemon and the application binaries.

Clearly, this process not only requires a lot of effort on the part of the system adminis-
trator, but also requires a lot of trust between the involved machines, and consequently, a
lot of prior human communication between the administrators of different machines. All
this means that it can take days, weeks, or even months to set up a large NOW – that is, if
it can be set up at all. For this reason, the use of PVM and MPI has mostly been restricted
to internal use within research institutions, where such close coordination is possible.

Other Metacomputing Systems and Grid Systems

More recent metacomputing projects have started going beyond the bounds of individual
institutions, and have started addressing the problems of security, reliability, and scalabil-
ity in nation-wide and global networks. These include Legion [62], Globus [50], NetSolve
[27], and Ninf [135]. One of the biggest projects so far is the Partnerships for Advanced
Computational Infrastructure (PACI) program, which in 1998 received a five-year grant
of $340 million from the National Science Foundation to develop a “National Technology
Grid” for the United States [141]. Since then, a lot of metacomputing research has been fo-
cused on creating grid systems, which aim provide seamless access to computing resources
around the country and the world such that users who need processing power can just
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“plug-in” to the grid, just as one can plug-in to a wall socket to get electric power from the
national power grid [51].

2.1.2 Volunteer Computing

Volunteer computing is a form of metacomputing that focuses on maximizing the ease
with which people can have their machines be part of a metacomputer.

While other forms of metacomputing such as grid computing seek to make using com-
pute servers on the network easy, setting up these compute servers is currently not as easy.
Currently, most of these projects are focusing on making supercomputers and comput-
ers in research labs available for use by others. Since these machines are already in the
hands of experts, making them easy to install is not a top priority. Thus, like PVM and
MPI, metacomputing systems still have complex setup requirements that prevent ordinary
users from participating in these systems.

The idea behind volunteer computing is to eliminate these setup requirements, and
make it so easy to join a computing network that anyone, even a casual computer user
without any technical knowledge, can do it. By allowing casual users to contribute their
computers’ idle processing power in this way, volunteer computing makes it possible to
harness the power of thousands, or even millions, of computers in very little time. At the
same time, it also makes metacomputing and all its benefits more accessible to the common
Internet user.

Application-based Volunteer Computing Systems

As mentioned in Sect. 1.1, volunteer computing systems, such as SETI@home, distribut-
ed.net, and a rapidly increasing number of other projects (see [117] for a good listing of
different volunteer computing-type projects), are already demonstrating this great poten-
tial of volunteer computing. A large part of this success can be attributed to the relative
ease with which users are able to join their systems. To volunteer, a user only needs to:

1. Go to the project’s web site and download an executable file for his or her own ma-
chine architecture and operating system. Typically, versions of the application soft-
ware are provided for major architectures and operating systems such as Windows,
Macintosh, and UNIX.

2. Unarchive and install the software on the volunteer machines.

3. Run the software on the volunteer machines.

At this point, the software takes care of automatically communicating with project server,
requesting work, and sending back results. All the user has to do is leave the software run-
ning in the background on these machines. (Most of these systems also provide a screen-
saver mode that would let the worker program run when the user is idle.) Unlike PVM,
these systems do not require administrators to personally install daemons on the volunteer
machines, or contact the volunteer users to acquire remote shell access. In fact, for popular
operating systems such as Windows, it can take as little as 10 minutes or less to install the
the volunteer worker program on one’s machine and have it start computing already.
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Web-based and Java-based Volunteer Computing

Recent advances in World Wide Web technology offer to make volunteer computing even
easier. Key among these is Sun Microsystems’ Java technology [59], which allows people
to write platform-independent programs called applets, that can be placed on a web page
together with ordinary text and images. When a user views a web page, any applets on
the page are automatically downloaded by the user’s browser and executed on the user’s
machine, where they can provide dynamic and interactive features to the web page not
possible with ordinary text and images. Java applets can be used to enhance web pages
with such features as animations, interactive demos, and user-friendly input forms. Java’s
built-in networking features also allow applets to be used for interactive multi-user ap-
plications that allow people to interact with each other and share ideas through the Web,
such as games, “chat rooms”, and “shared whiteboards”. Java’s versatility has made it
one of the most popular and fastest-growing software technologies today. All major web
browsers now support Java, and thousands of individuals, companies, and schools are
now using Java for a wide variety of personal, commercial, and educational purposes.
(The JARS Java repository web site [76] contains a good collection of these applets.)

Java’s applet technology, coupled with its popularity and ubiquity, offers us an oppor-
tunity to make volunteer computing both easier and more accessible than in systems like
distributed.net. With Java, programmers who want to set up a metacomputing network
can write their software as Java applets and post them on a web page. Then, people who
want to volunteer need only view the web page with their browsers, and wait. The applets
are downloaded automatically and run without any human intervention. The volunteers
do not even have to install any software themselves. In this way, adding a computer to a
metacomputing network – something that used to require expert administrators and take
days of setup time in conventional NOWs and metacomputers – can be done by the aver-
age user with literally a single mouse click. As we shall see in Chap. 3, this brings with it a
lot of advantages and creates many new possibilities.

2.2 Potential Forms of Volunteer Computing

By making it easy for people to volunteer their machines, volunteer computing not only
allows us to form parallel computing networks more quickly and with more processors
than possible before with traditional metacomputing systems, it also makes it possible for
people who have not considered parallel processing at all before – due to lack of expertise,
time, or resources – to start considering it. In this way, volunteer computing, like the
tradition of bayanihan, creates many new possibilities where there were none before.

In this section, we identify some of these possibilities, and show that volunter comput-
ing is not limited to true volunteer computing networks like SETI@home and distributed.net,
but can take many other forms as well.

2.2.1 True Volunteer Computing

Systems such as SETI@home and distributed.net may be called true volunteer computing
systems. That is, their participants are volunteers in the true sense of the word in that they:
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(1) come and leave of their own free will, (2) are unknown to the administrators before they
volunteer – i.e., they can come from anywhere, not just from the administrators’ domains,
and (3) do not expect substantial compensation.

By allowing anyone on the Internet to join as they please, true volunteer computing
systems have the potential for pooling together the computing power of the millions of
computers on the Internet. Today, it is estimated that there are about 300 million computers
on the Internet [89]. If we can somehow get even a small fraction of these to work together,
we can have a world-wide supercomputer more powerful than any single supercomputer.
The experience of distributed.net and SETI@home already attest to this fact.

One question in true volunteer computing today is what kinds of applications can at-
tract a large number of volunteers. To date, the most popular and successful applications
have been what we might call “cool” challenges – challenging computational problems
that people join just for fun and the pride of being part of a global effort. So far, these
have mostly involved mathematical problems such as searching for prime numbers (e.g.,
GIMPS), and cryptographic challenges (e.g., the 1994 factoring effort, and distributed.net).
Other possibly more interesting cool challenges for the future include: chess (imagine a
“Kasparov vs. the World match”, where Kasparov plays against a world-wide volunteer
computing network1), international computer olympics (countries form their own volun-
teer computing networks, which then play against each other in competitions, such as
chess, where the winner is determined by a combination of algorithm design and the num-
ber of loyal citizens willing to participate), and distributed graphics applications (“Join in
the making of Toy Story III!”).

Scientific problems in areas that appeal to the public can also attract volunteers. The
naturally interesting topic of SETI@home project – i.e., finding signs of extra-terrestrial life
– accounts for SETI@home’s great popularity. More recently, other volunteer computing
projects have started with similarly interesting and popular topics such as finding cures
for AIDS [49] and cancer [114, 149], fighting influenza [119], and others.

Ultimately, true volunteer computing is most useful for worthy causes – practical, useful,
and relevant problems that serve the common good. Worthy causes can be local or global.
Local worthy causes are those relevant to a particular city, country, or geographic area.
These can include traffic simulation studies for congested mega-cities, and local weather
and seismological simulation research. Global worthy causes have a wider scope, and
include those that can help humankind as a whole, such as the medical applications men-
tioned above, as well as others such as simulating the effects of environmental policies on
global warming and other environmental effects.

With true volunteer computing, an organization with a worthy cause can set up a vol-
unter computing system, and invite concerned Internet users to donate their idle cycles by
downloading a screensaver or visiting a web page, and leaving these programs running
in the background while they work. Volunteers contribute processing power towards the
worthy cause willingly, and according to their own capacity. In this way, the end result of
true volunteer computing is electronic bayanihan – people working together for the good
of their community and even the world.

1Interestingly, a “Kasparov vs. the World” match has already been played on the web with human oppo-
nents [95]. In this game, anyone on the Internet could vote for a move through web page. The move with the
highest number of votes was then chosen.
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2.2.2 Private Volunteer Computing

Although true volunteer computing may be the most visible and most noble form of vol-
unteer computing, it is not the only one. Volunteer computing can take other, less lofty but
more practical, forms as well.

At the lowest level, volunteer computing principles can be used in private volunteer
computing networks within organizations such as companies, universities, and laboratories
to provide inexpensive supercomputing capabilities. Many companies and universities
today have internal networks (intranets) with many PCs and workstations that remain idle
most of the time – not only during off-hours, but also during office hours when they are
mostly used for non-computational tasks such as word processing. Volunteer computing
can be used to pool together the computing power of these existing and under-utilized
resources to attain supercomputing power that would otherwise be unaffordable. This
not only makes it possible for research organizations to satisfy their computational needs
inexpensively, but also creates an opportunity for other organizations to consider the use
of computational solutions and tools where they have not done so before.

For example, companies with heavy computational needs can use volunteer comput-
ing systems as an inexpensive alternative or supplement to supercomputers. Some poten-
tial applications include: physical simulations and modeling (e.g., airflow simulation in
aircraft companies, crash simulation in car companies, structural analysis in construction
firms, chemical modeling in chemical, biomedical, and pharmaceutical labs, etc.), intensive
data analysis and data mining (e.g., for biomedical labs involved in genome research, for
financial analysts and consulting firms, etc.), and high-quality 3D graphics and animations
(e.g., for media and advertising companies).

At the same time, companies that have hitherto deemed computational solutions or
tools too expensive can start benefiting from them. For example, manufacturing compa-
nies can benefit from computational analysis and process simulations of their complex
pipelines. These can be used to expose bottlenecks and weak points in processes, pre-
dict the effects of changes, and lead to finding ways to make them more efficient and
cost-effective. Marketing departments of companies can do data mining on sales and con-
sumer data, finding patterns that can help them formulate strategies in production and
advertising. In general, by providing an affordable way to do computation-intensive anal-
ysis, volunteer computing can let companies enhance the intuitive analysis and ad hoc
methods currently used in planning and decision making, and make them more informed
and systematic.

Like companies, universities and research labs can use volunteer computing to turn
their existing networks of workstations into virtual supercomputers that they can use for
their research. This is especially useful in financially constrained institutions, such as uni-
versities in developing countries that cannot afford to buy supercomputers and have thus
far been unable to even consider doing computation-intensive research. Even in non-
research-oriented universities that do not have a true need for supercomputing, virtual
supercomputers built through volunteer computing can be used to teach supercomputing
techniques, giving students skills they can use in graduate school or industry.

Most of the applications mentioned here can be implemented with conventional NOW
or metacomputing software, and are in fact already being implemented in a growing num-
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ber of organizations today. The advantage of volunteer computing over these is that: (1) it
makes implementing applications dramatically easier for users and administrators alike,
and (2) by doing so, it makes the technology accessible to many more organizations, in-
cluding those that do not have the time and expertise to use conventional NOWs. For
example, if a company decides to use its machines for parallel processing, system admin-
istrators do not need to spend time manually installing software on all the company ma-
chines anymore. With a web-based system, they can simply post the appropriate Java
applets on the company web site, and then tell their employees to point their browsers to a
certain web page. The employees do so, and leave their machines running before they go
home at night. In this way, a company-wide volunteer computing network can be set up
literally overnight, instead of taking days or weeks for installing software and educating
users as it would in conventional systems.

2.2.3 Collaborative Volunteer Computing

The same mechanisms that make volunteer computing within individual organizations
work can be used to make volunteer computing between organizations as well. By vol-
unteering their computing resources to each other, or to a common pool, organizations
around the world can share their computing resources, making new forms of world-wide
collaborative research possible.

Much research today is going into developing technologies for collaboratories – world-
wide virtual laboratories where researchers in different labs around the world can interact
freely with each other and share data and ideas, as if they were all in one big laboratory
[124, 159]. Technologies currently under development include videoconferencing, shared
whiteboards, remote instrument control, and shared databases. Volunteer computing can
enhance collaboratories by allowing researchers to share not only data and ideas, but com-
puting power as well.

Even organizations that do not collaborate very closely can use volunteer computing
mechanisms to barter trade their resources, depending on their need. This has interesting
geographical possibilities. For example, a university in the United States can allow a lab
in Japan to use its CPUs at night (when it is day in Japan) in exchange for being able to use
the Japanese lab’s CPUs during the day (when it is night in Japan). In this way, we get a
win-win situation where both labs get twice the processing power during the hours they
need it.2

Taken to an extreme, pooling and barter trade of computing resources between orga-
nizations can lead to the formation of cycle pools – massive pools of processing power to
which people can contribute idle cycles, and from which people can tap needed processing
cycles. This can be used for organizations’ individual gains, as in the example above, but
can also be a venue for larger organizations to help smaller ones and contribute toward a
better social balance of resources. For example, a large university with more idle computer
power than it needs can donate its idle cycles to the pool, and allow smaller universities
and schools to make use of them for their own teaching and research needs.

Note that these possibilities are not unlike what grid systems seek to realize. Thus, in
a way, volunteer computing can be seen as an enabling technology for grid-based systems

2A similar idea is proposed in [46].
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as well.

2.2.4 Commercial Volunteer Computing

By giving people the ability to trade computing resources depending on their needs, vol-
unteer computing effectively turns processing power into a commodity. With appropriate
and reliable mechanisms for electronic currency, accounting, and brokering, market systems
become possible, allowing people and groups to buy, sell, and trade computing power.
Companies needing extra processing power for simulations, for example, can contact a
broker machine to purchase processing power. The broker would then get the desired pro-
cessing power from a cycle pool formed by companies selling their extra idle cycles. Even
individuals may be allowed to buy and sell computing power.

Commercial applications of volunteer computing also include contract-based systems,
where computing power is used as payment for goods and services received by users. For
example, information providers such as search engines, news sites, and shareware sites,
might require their users to run a Java applet in the background while they sit idle reading
through an article or downloading a file. Such terms can be represented as a two-sided
contract that both sides should find acceptable. For example, while it is actually possible
in today’s browsers to hide Java applets inside web pages so that they run without users
knowing about them, most users will consider this ethically unacceptable, and possibly
even a form of theft (of computing power). Sites that require users to volunteer must say
so clearly, and allow users to back-out if they do not agree to the terms.

If appropriate economic models and mechanisms are developed, commercial volunteer
computing systems can allow people not only to save money as they can in organization-
based systems, but to make money as well. Such an incentive can attract a lot of attention,
participation, and support from industry for volunteer computing. With commercial vol-
unteer computing systems, what happened to the Internet may happen to volunteer com-
puting as well – it will start out as something primarily used in academia, and then when
it becomes mature, it will be adopted by industry, which will profit immensely from it.

In fact, in the past year, this has already started to happen. Several new startup com-
panies, including Entropia [45], Parabon [113], Popular Power [118], Process Tree [121],
and United Devices [148], have taken the technology and ideas from SETI@home and dis-
tributed.net and are setting up market-based systems, hoping to make profits by acting as
brokers between people that need computing power, and people that are willing to share
their idle computing power for pay.

2.2.5 NOIAs

Many experts, both in industry and in the academic community, predict that in the near fu-
ture, information appliances – devices for retrieving information from the Internet which
are as easy to use as everyday appliances such as TVs and VCRs – will become common-
place [53, 107]. In the United States today, companies such as WebTV [156] are starting to
develop and sell information appliances in the form of “set-top boxes”, while many cable
companies already support high-speed cable modems that use the same cable that carries
the TV signals to connect users to the Internet up to 50 times faster than a telephone mo-
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dem can. It is not hard to imagine that within the next five or ten years, the information
appliance will be as commonplace as the VCR, and high-speed 24-hour Internet access as
commonplace as cable TV.

This brings up an interesting idea: what if we use volunteer computing to allow users
of these information appliances to volunteer their appliances’ idle cycles? These nodes
can perform computation, for example, when the user is not using the information appli-
ance, or while the user is reading a web page. Such networks-of-information-appliances,
or NOIAs, as we can call them (appropriately, the acronym also means “mind” in Greek
[νoια], and evokes an image of a brain-like massively parallel network of millions of small
processors around the world), have the potential for being the most powerful supercom-
puters in the world since: (1) they can have tens of millions of processors (i.e., potentially
as many as the number of people with cable TV), and (2) although they are only active
when the user is idle, we can expect the user to be idle most of the time.

NOIAs can be contract-based systems. Cable companies or Internet service providers
(ISPs) can sign a contract with their clients that would require clients to leave their infor-
mation appliance boxes on and connected to the network 24 hours a day, running Java
applets in the background when the user is idle. This may be acceptable to many clients
since most people today are used to leaving their VCR on 24 hours a day anyway. In some
cases, however, clients may object to having someone else use their appliances when they
are not using it, so a reasonable compromise may be to always give clients the option of not
participating, but give benefits such as discounts or premium services to clients who do.
In addition, volunteering clients may be allowed to indicate which kinds of computations
they do and do not want to be involved in. For example, a client may allow her appliance
to be used for biomedical research directed at lung cancer, but not for tobacco companies
doing data mining to improve their advertising strategy.

From programmers’ and administrators’ points-of-view, NOIAs also have several ad-
vantages over other kinds of volunteer networks. Hardware-based cryptographic devices
can make NOIAs secure against malicious volunteers attempting to perform sabotage (see
Sect. 2.3.3) by preventing such saboteurs from forging messages or modifying the applet
code that they are given to execute. NOIAs are also significantly more stable than other
forms of volunteer computing. That is, since users are likely to leave their information
appliances on all the time, then the chance of a particular node leaving a NOIA is smaller
than that in other kinds of volunteer networks. Finally, NOIAs composed purely of in-
formation appliances would also be homogeneous, since each participating information
appliance would have the same type of processor. All these lessen the need for adaptive
parallelism (see Sect. 2.3.2), and allows greater efficiency and more flexibility in the range of
problems that a NOIA can solve.

It may take some time before information appliances and high-speed Internet access
become widely available enough to make NOIAs possible. However, it is useful to keep
them in consideration since techniques developed for the other forms of volunteer com-
puting are likely to be applicable to NOIAs when their time comes.
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2.3 Research Issues and Challenges

While volunteer computing offers all these promising potentials, realizing these poten-
tials and implementing real volunteer computing systems involves many interesting and
challenging technical questions and problems. These include technical issues that need to
be addressed in making volunteer computing possible and effective. These technical is-
sues can be classified broadly into accessibility (making volunteer computing as easy, open,
and inviting to volunteers as possible), applicability (making volunteer computing useful
in real life), and reliability (making volunteer computing work in the presence of faults and
malicious volunteers). In addition, there are economic issues as well, which are especially
relevant in implementing commercial systems. In this section, we present all these issues
and discuss the challenges that they bring to researchers and developers of volunteer com-
puting systems.

2.3.1 Accessibility

The key to volunteer computing’s advantages over other forms of metacomputing is its
accessibility. It is by making it as easy as possible for as many volunteers as possible to join,
volunteer computing can do things that other forms of metacomputing cannot.

Achieving accessibility involves addressing several issues, including:

• Ease-of-use and platform-independence. In order to maximize the potential worker
pool size and minimize setup time, volunteer computing systems must be usable and
accessible to as many people as possible. Thus, they must be easy to use and platform-
independent. Volunteering must require as little technical knowledge from volunteers
as possible. Even a seemingly simple setup procedure such as downloading and
installing a program may be too complex, since most computer users today gener-
ally only know how to use applications, not how to install them. At the same time,
users should be able to participate regardless of what type of machine and operating
system they use, and preferably without having to identify their platform type.

• Volunteer-side security. Volunteer computing systems must also be secure in order
not to discourage people from volunteering. Since programs will be executed on the
volunteers’ machines, volunteers must be given the assurance that these programs
will not do harm to their machines.

• User-interface design. Finally, volunteer computing systems should have a good user
interface design to encourage volunteers to stay and participate. In most traditional
parallel systems, user interfaces for the processing nodes are unnecessary because
these nodes are usually hidden inside a large supercomputer and cannot be accessed
independently anyway. In volunteer computing systems, however, volunteers need
an interface for doing such things as starting and stopping applets, or setting their
priority. They also need some sort of progress indicator to assure them that their ma-
chines are actually doing useful work. User interfaces for viewing results and statis-
tics, or for submitting jobs or specifying parameters, are also important. Whereas
these are traditionally available only to the server’s administrators, we may want
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to make them available to users as well. In commercial systems, for example, users
would like a good interface for submitting problems, and receiving results.

2.3.2 Applicability

Of course, volunteer computing would not be interesting if it were not useful. Thus, the
applicability of volunteer computing is of prime concern. This involves issues in programma-
bility, adaptive parallelism, performance, and scalability.

Programmability

The first aspect of applicability is programmability. A volunteer computing system should
provide a flexible and easy-to-use programming interface that allows programmers to im-
plement a wide variety of parallel applications easily and quickly.

One of the key benefits that PVM and MPI brought to the parallel computing and meta-
computing worlds, for example, is to provide an easy-to-use, general-purpose program-
ming interface that programmers can quickly learn, and use for a wide variety of applica-
tions. This enabled programmers to start using the idea of parallel computing for their own
applications. Similarly, in order for people to start benefitting from volunteer computing
systems, it would be good to provide them with an easy-to-use and general-purpose APIs
and frameworks that would enable them to implement their own applications on them.

The Java programming language provides a good starting point in this respect. Aside
from being platform-independent and secure, Java is also object-oriented, encouraging (of-
ten even forcing) programmers to write code in a modular and reusable manner. One chal-
lenge in using Java for volunteer computing, therefore, is to develop programming models
and interfaces that allow users to take advantage of object-oriented programming while
making it easy to write parallel programs and to port existing programs, usually written
in C or Fortran, to Java.

Adaptive parallelism

One thing that makes writing programs for volunteer computing systems challenging is
the heterogenous and dynamic nature of volunteer computing systems. Volunteer nodes can
have different kinds of CPUs, and can join and leave a computation at any time. Even
nodes with the same type of CPU cannot be assumed to have equal or constant comput-
ing capacities, since each can be loaded differently by external tasks (especially in systems
which try to exploit users’ idle times). For these reasons, models for volunteer computing
systems must be adaptively parallel [55]. That is, unlike many traditional parallel program-
ming models, they must not assume the existence of a fixed number of nodes, or depend
on any static timing information about the system.

Traditional message-passing-based parallel systems, such as those using PVM or MPI,
are generally not adaptively parallel. In these systems, it is not uncommon to write pro-
grams that say something like, “At step 10, processor P1 sends data A to processor P2.”
This may not work or may be inefficient in a volunteer computing system because P2 may
be a slow machine, and may not be ready to receive the data at the time P1 reaches step
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10. Worse, P2 may simply choose to leave the system, in which case P1 would get stuck
with no one to send the data to.

Various strategies for implementing adaptive parallelism have already been proposed
and studied. In eager scheduling [34], packets of work to be done are kept in a pool from
which worker nodes get any undone work whenever they run out of work to do. In this
way, faster workers get more work according to their capability. And, if any work is left
undone by a slow node, or a node that “dies”, it eventually gets reassigned to another
worker. Volunteer computing systems that implement eager scheduling include Charlotte
[12], and Javelin++ [104].

The Linda model [26] provides an associative tuple-space that can be used to store both
data and tasks to be done. Since this tuple-space is global and optionally blocking, it can
be used both for communication and synchronization between parallel tasks. It can also
serve as a work pool, which like in eager scheduling, can allow undone tasks to be redone.
Linda was originally used in the Piranha [55] system, and more recently implemented in
Java by WWWinda [64], Jada [125], and the older version of Javelin, SuperWeb [6]. Sun
itself is currently using a Linda-like tuple-space as a basis for their Jini and JavaSpaces
technologies [145].

In Cilk [17], a task running on a node, A, can spawn a child task, which the node
then executes. If another node, B, runs out of work while node A is still running the
child task, it can steal the parent task from node A and continue to execute it. This work-
stealing algorithm has been shown to be provably efficient and fault-tolerant. Cilk has been
implemented in C for NOWs in Cilk-NOW [18], and a proof-of-concept system using Java
command-line applications (not browser-based applets) was implemented in ATLAS [11].

Performance and scalability

Finally, for volunteer computing to be truly useful, it must ultimately provide its users
with speedups better than, or at least comparable to, other available metacomputing tech-
nologies. This implies that volunteer computing systems must have good raw performance
and high scalability.

These issues, while important in all forms of volunteer computing, are of particular
concern in Java-based volunteer computing systems because of Java’s historically slow
execution speed and restricted communication abilities. One of the major problems in
Java-based volunteer computing, for example, is that currently, security restrictions dic-
tate that applets running in users’ browsers can only communicate with the Web server
from which they were downloaded. This forces Java-based volunteer networks into star
topologies, which have the disadvantage of having high congestion, no parallelism in com-
munications, and not being scalable.

To solve this problem, we may allow volunteers who are willing to exert extra effort
to download Java applications, and become volunteer servers. Volunteer server applications
need to be run outside a browser, but do not have security restrictions. This lets them
connect with each other in arbitrary topologies, as well as act as star hubs for volunteers
running applets. Alternatively, we can use signed applets, which will also be free of restric-
tions. These applets can be used as volunteer servers as well.

Another approach would be to design peer-to-peer networks which apply the basic ideas
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used in popular file-sharing networks such as Napster [100] and Gnutella [58] for provid-
ing computational resources instead of files. Some of the more recent comercial metacom-
puting companies, including those part of the Intel Peer-to-Peer Working Group [74] claim
to be taking this approach. There are many challenges in taking this approach, however,
as it exacerbates the problems of adaptive parallelism, security, and reliability.

2.3.3 Reliability

Because of their size and their open nature, volunteer computing systems are more prone
to faults than other forms of parallel computing. Not counting the problem of volunteers
crashing or leaving (which is already covered by adaptive parallelism), faults can include
not only unintentional random faults, such as data loss or corruption due to faulty network
links or faulty processors, but also intentional faults caused by malicious nodes submitting
erroneous data.

One type of malicious attack is sabotage, where volunteers (and possibly also non-
volunteers) intentionally submit erroneous results. An unscrupulous user in a commercial
system, for example, may try to get paid without doing any real work by not doing its
work but simply returning random numbers instead. Such cheating volunteers can cause
financial loss for the commercial system, not only because they cheat the system of money,
but even more because they can generate errors that can propagate and render other com-
putations invalid – even those from honest volunteers.

Another type of attack, particularly relevant in commercial volunteer computing net-
works, is espionage, where volunteers steal sensitive information from the data they are
given. Suppose, for example, that a company A purchases computing power from a com-
mercial cycle pool in order to process its sales data. Without some form of protection, a
competitor B can then spy on A’s data by joining the cycle pool and volunteering to do
work.

Guarding against malicious attacks is a very challenging problem. It is also one that
has not been studied very well since, so far, people have been able to trust the parts in their
computer not to intentionally sabotage their computations. Possible ways of addressing
this problem include using cryptographic techniques such as digital signatures and check-
sums to protect against volunteers sending back random results, encrypted computation to
protect against espionage and attempts to forge digital signatures and checksums, and peri-
odic obfuscation (i.e., instruction scrambling) techniques to simulate encrypted computation
when it is not possible.

In cases where these mechanisms may not work, however, one must resort to some
form of redundancy. For example, we may give the same piece of work to three differ-
ent processors, and have them vote on the correct answer. Unfortunately, however, such
techniques have a high computational cost, since repeating work r times generally means
taking r times longer to solve the whole problem. Thus, an interesting research prob-
lem is to develop effective but efficient fault-tolerance techniques. As we shall show in
Sect. 6.3.3, one possible approach is spot-checking with blacklisting, where results are only
double-checked occasionally, but faulty nodes that are caught are not used again. This
may be less reliable than replication, but potentially much more efficient.

In some cases, reliability problems can be addressed by simply choosing more fault-
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tolerant problems. Such problems include those that do not require 100% accuracy in the
first place, such as sound or graphics processing where a little static or a few scattered erro-
neous pixels would be unnoticeable or can be averaged out to be make them unnoticeable.
Other suitable problems may include problems like rendering, where a human user can
visually recognize any unacceptable errors and ask the system to recalculate (and black-
list the node responsible for the problematic areas), and self-correcting algorithms such as
genetic algorithms where bad results are naturally screened out.

Economic Issues

Issues in paid and commercial systems. In implementing commercial volunteer com-
puting systems, we need to have models for the value of processing power. How does
supply and demand affect the value of processing power? How about quality of service?
How does one arrive at guidelines for fair barter trade? We also need mechanisms to im-
plement these models. These include electronic currency mechanisms to allow money to
be electronically exchanged in a safe and reliable manner, an accurate system for account-
ing of processing cycles, and efficient brokering mechanisms for managing the trading of
processing cycles. Because these mechanisms deal with real money, it is important that
they are accurate and robust. Loopholes that permit crimes such as electronic forgery of
currency, and “cycle theft” (using someone’s computer without paying them) can lead not
only to loss of computational power and data, but also to direct financial losses.

Many groups are already studying these issues [6, 24, 88, 22, 97], and several compa-
nies have already started brokering volunteer computing resources for pay as noted in
Sect. 2.2.4. Meanwhile, it may also be worthwhile to look into implementing commercial
systems with more relaxed mechanisms, such as lotteries and barter trade, that may be less
accurate, but at least cannot result in large direct financial losses.

Hidden costs. One of the early arguments for using NOWs instead of supercomputers
was that of cost-effectiveness: whereas a single supercomputer costs millions of dollars, a
NOW uses existing workstations and thus costs next to nothing. In this way, NOWs can
bring parallel processing capabilities to people who cannot afford to buy supercomputers.
When considering massive NOWs such as volunteer computing networks or NOIAs, how-
ever, the validity of this argument may not be so clear anymore. Several issues arise and
require further study.

For one, the cumulative cost of supplying electrical power to a massive NOW with
thousands or millions of nodes may eventually offset the cost advantage gained from us-
ing existing hardware. Because of overhead, fault-tolerance redundancy requirements,
and other factors, we expect that a massive NOW with the same processing power as a su-
percomputer would need several times as many nodes. Furthermore, each of these nodes
would be an entire PC or workstation instead of just a single processor. Thus, it is easily
conceivable that a NOW can use much more total power than a supercomputer.

We might argue that this power is already being spent by computers sitting idle, and
that we are just putting it to better use. This may be true, but it deserves more study.
It may be that with power-saving mechanisms, PCs and information appliances would
spend less energy when idle. As a very simple example, when a user is not using his
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Figure 2-1: A Taxonomy of Volunteer Computing Systems.

information appliance, he can turn it off. If we required the user to allow his information
appliance to be used in a NOIA as part of his contract, then he cannot turn it off and it will
be spending energy which he would normally not be spending otherwise.

Another source of hidden costs is the network. The high-speed links needed to alleviate
congestion and improve performance in massive cycle pools may end up costing more
than a supercomputer. These links are often leased from a telephone company, and thus
can be quite expensive. Furthermore, if a volunteer computation uses a public network
such as the Internet, then moving data between computers can cause congestion in some
areas, which can then affect unrelated Internet traffic, and cause equivalent financial losses
in places uninvolved with the project. Note that these problems are not necessarily enough
to make volunteer computing completely untenable. However, in the long run, they are
real concerns and should be studied further.

2.4 A Taxonomy of Volunteer Computing Systems

Figure 2-1 shows a taxonomy (drawn as a Karnaugh map) of various forms of volunteer
computing systems discussed in Sect. 2.2 according to the following “three A’s” criteria:

1. autonomy (truly voluntary vs. forced) – whether volunteers can join and leave of their
own free will at any time or are “forced” into volunteering,

2. anonymity (known and trusted vs. untrusted) – whether the volunteers are known
and trusted by the administrators, or are unknown or untrustable, and

3. altruism (unpaid vs. paid) – whether volunteers expect to be compensated for volun-
teering or not.

This taxonomy is useful in identifying the various issues that need to be addressed in
implementing these systems, as discussed in Sect. 2.3.
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In general, autonomy is related to the need for adaptive parallelism. That is, forced
(non-autonomous) volunteer networks would in general be easier to implement and
would potentially have higher performance because they can rely on processing nodes
to stay in the system longer. In such networks we may be able to consider running longer
jobs than in voluntary systems, where we need to make jobs short enough so they can be
done before a volunteer quits. Also, we may be able to do peer-to-peer communication,
which, as noted earlier, cannot be done in systems where machines can leave the system at
arbitrary times.

Anonymity is related to the security and reliability of the system. Generally, trusted
(non-anonymous) networks would be easier to implement than untrusted networks be-
cause they do not need to be secure against cheating, sabotage, and espionage as described
in Sect. 2.3.3.

Altruism is related to the need for economic mechanisms, for security and reliability,
and for performance. Altruistic systems are generally easier to implement since they do
not need precise and accurate accounting and payment mechanisms. Also, they are not
as prone to cheating, sabotage, and espionage because there is no economic incentive for
volunteers to do so. Furthermore, they can also afford to be less efficient in terms of perfor-
mance since they are not financially accountable to paying clients who might be concerned
about getting their money’s worth.

In summary, forced, trusted, and unpaid systems are easier to implement because of
fewer issues need to be addressed in them. (In fact, traditional NOWs and metacomputing
software are built to run on such systems.) On the other hand, voluntary, trusted, and paid
systems have the greatest potential for attracting the largest number of volunteers and thus
offer the promise of very high performance if their associated problems can be overcome.

2.5 Context and Conclusion

In this chapter, we have presented the many potential forms and benefits of volunteer
computing, as well as the many new research issues and challenges it brings. Although
they use different names such as web-based metacomputing, global computing, and Internet
computing, many others have also recognized the potentials and challenges of volunteer-
based parallel computing systems, and have presented their ideas (e.g., [6, 12, 46, 56, 111]
and others). Our own approach in this chapter has been to present volunteer computing
as a distinct new form of computing, specifically distinguished from other network-based
parallel computing systems such as NOWs and metacomputing by its emphasis on ease-
of-use and accessibility for volunteers. We have also aimed to present a high-level map
of the domain of this new form of computing, as well as of the research terrain ahead, for
us and others who wish to explore it. In the rest of this thesis, we present the results of
our own explorations in this new space, presenting ways to address the many new research
issues, and in the process, showing how volunteer computing’s potentials can be achieved.



Chapter 3

The Bayanihan Web-based Volunteer
Computing System

In this chapter, we present the idea of web-based volunteer computing, and present a Java-
based implementation called Bayanihan. We begin by discussing the advantages of web-
based volunteer computing over existing application-based systems such as SETI@home
and distributed.net. We then present the design of the Bayanihan system, and demonstrate
how it allows us to: (1) provide better ease-of-use and accessibility than application-based
systems, (2) achieve wider applicability by allowing programmers to write a wider variety
of applications than these ad hoc systems, and (3) achieve adaptive parallelism, reliability,
and scalability. In the process, we not only demonstrate the effectivity and applicability of
Bayanihan itself, but also present new ideas, techniques, and tools that can be applied to
other systems as well.

3.1 Web-based and Java-based Volunteer Computing

3.1.1 Limitations of Application-based Systems

As shown in Sect. 2.1.2, the success of volunteer computing systems such as distributed.net
and SETI@home has mainly been due to their great accessibility. By allowing people to
volunteer by simply downloading and installing a screensaver program, these systems
have been able to attract many volunteers and achieve much higher levels of performance
than traditional NOW and metacomputing systems.

These systems, however, still have limitations. For one, they still require some techni-
cal knowledge from volunteers – i.e., at least enough to know their machine architecture,
choose the appropriate binary files, download the files, install them, and run the software.
Although this may seem like nothing to experienced computer users, it may be intimidat-
ing enough to stop a casual user who only knows how to use applications but not how
to install them. Furthermore, even advanced users of non-Windows or non-Macintosh
operating systems may find installing software difficult (if supported at all). While in-
stalling SETI@home on a Windows machine is quite easy, for example, (it takes less than
10 minutes and only a few mouse clicks to install SETI@home on a Windows PC, including
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finding and downloading the file and browsing through the documentation during instal-
lation), installing it on a UNIX machine requires choosing from 31 different versions, and
setting up scripts to run the program from the command line.

Even if users know how to install software on their machines, however, some people
may not want to. One problem is security. Although volunteer computing systems such
as distributed.net do not require giving explicit remote shell access to project administra-
tors like traditional NOW systems such as PVM do, they do require running programs
that effectively have the same kind of remote-shell-like access anyway. The screensaver
programs for these systems are usually run in user mode, which means that these pro-
grams have access to the user’s data, potentially including sensitive data such as credit
card numbers and passwords. Users may (and should) be wary of volunteering for fear of
downloading a Trojan horse or virus that would steal or destroy their data. In recognition
of this problem, both SETI@home and distributed.net have issued stern warnings against
downloading their client programs from other web sites. They also provide a checksum
of their files to allow users to verify their integrity. Unfortunately, however, most users
would probably not know how to verify these checksums.

Finally, in some cases, users may not even be capable of installing software on their
systems. This may be because there is no version of the software for their operating system,
(Entropia [45], for example, only runs on Windows machines), or because their operating
systems do not support installing software. The latter case is true in network computers,
set-top boxes, and other forms of information appliances that may supply users with web-
browsing and Java capabilities, but may not allow them to install other software. It may
also be true in cases where a user does not have the access rights to install software as
might be the case of a user in an Internet café, or a user using a school-owned machine.1

The problem of multiple platforms also limits the applicability of non-web-based sys-
tems, and in particular, their programmability. Because of the variations between machine
architectures and operating systems, programmers of these systems need to exert a non-
trivial amount of effort to write, compile, and test code different versions for all the pos-
sible target architectures. In fact, programming these systems may even be harder than
programming traditional non-volunteer metacomputing systems. This is because in many
cases, these volunteer computing systems are ad hoc and cannot take advantage of stan-
dardized cross-platform libraries for doing low-level operations such as communication
and synchronization, like those provided by systems like PVM.

3.1.2 Web-based and Java-based Systems

Sun Microsystem’s widely popular and ubiquitous Java technology [59] allows us to ad-
dress these problems by making it possible to write the volunteers’ code as platform-
independent applets, which are automatically downloaded and executed on users’ ma-

1We do not mean to encourage users to volunteer machines that are not their own, especially if it is against
the policy of the owner, as is the case in some schools. However, in some cases, such as in Internet cafés where
a user is paying for the use of the computer, then the user arguably has the right to volunteer the machine if he
wants to – provided that he only does so during the time that he pays for, and that he kills and uninstalls the
program after he leaves. Application-based systems would not allow users to do this, but web-based systems
using Java would.
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chines when they visit a web page with a Java-capable browser. Using Java to build web-
based volunteer computing systems in this way improves accessibility in three ways:

1. Ease-of-use. In a Java-based system, volunteering takes only one step: use a Java-
capable browser to visit the server web site. There is no technical knowledge required
beyond that of using a web browser. The user does not even have to be aware of the
file system, or understand what downloading an applet really means. Thus, anyone,
even minimally computer-literate users of commodity Internet services, can join in
such computations. Volunteering one’s computer can literally be as easy as a single
mouse click.

2. Platform-independence. One of the strengths of Java is its platform-independence.
This means that programmers need only write one version of their code and post
it on the Web as an applet, and it will run on any machine that has a Java-capable
browser – which is practically any machine today. Even users of information appli-
ances and Internet café machines, whose operating systems may not allow users to
download and execute non-Java programs can participate.

3. Security. Unlike the screensaver programs used by distributed.net and SETI@home,
the Java applets that volunteers download are executed in a sandbox that prevent
them from accessing the user’s data. This protects volunteers from viruses and Trojan
horses that might try to steal or destroy their data. Thus, potential volunteers who
are wary of security problems can be reassured and encouraged to participate.2

In addition to improving accessibility in this way, using Java also improves the appli-
cability of volunteer computing systems through better programmability. Java’s platform-
independence, as well as its built-in support for graphical user interfaces and network
communications, allows programmers to spend less time worrying about low-level de-
tails and more time focusing on writing code. Writing code itself is made easier by Java’s
relatively clean and easy-to-use language features, which allow programmers to take ad-
vantage of object-oriented design techniques without the complexity of C++. These make
it easier to develop general-purpose and extensible frameworks and APIs that can help pro-
grammers write a wider variety of applications than current ad hoc systems currently do.

Of course, web-based and Java-based systems have their own limitations. One of these
is the historically slow execution speed of the Java virtual machine (JVM) that executes the
platform-independent bytecode. Another problem comes from the security restrictions
imposed on Java applets that prevent applets from accessing local storage space or com-
municating with machines other than the host from which they came. Together, these two
problems may limit the performance and scalability of Java-based systems.

Most of these problems, however, can be addressed by using signed applets, that come
with a digital signature that identifies their author. A volunteer using such a signed applet
can decide whether he or she trusts the author or not, and tell the browser to lift the secu-
rity restrictions on it, allowing it to access local storage, communicate with other machines,
and, in some operating systems, even run native code.

2Of course, there is always a risk of having bugs that would allow people have been able to exploit loop-
holes in implementations of Java [36, 86]. However, Sun, as well as implementors of Java browsers, are con-
stantly on the watch for such loopholes and can plug them reasonably quickly once they are discovered.
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Furthermore, even without the use of signed applets, Java-based systems can still be
useful. We show in Sects. 4.2.1 and 4.3.1 that although older JVMs performed poorly, new
JVMs with just-in-time compilation can achieve performance levels comparable to native
code in tight-loop computations. Furthermore, we also show in this chapter and in Chap. 4
that volunteer computing can provide good performance and scalability for a useful vari-
ety of applications, even with the security restrictions imposed on ordinary applets.

3.2 The Bayanihan Web-based Volunteer Computing System

3.2.1 Design Goals

To demonstrate the benefits of web-based volunteer computing, and to explore the dif-
ferent issues of volunteer computing in general at the same time, we have developed the
Bayanihan web-based volunteer computing systems using Java.

In designing this system, we had three main goals:

1. to maximize accessibility and ease-of-use for volunteers by allowing them to volun-
teer by simply visiting a web page,

2. to provide application programmers with an easy-to-use and flexible programming
interface for building volunteer computing systems for various applications, and

3. to allow researchers to experiment with various ways of building volunteer comput-
ing systems and approaching the many research issues in volunteer computing.

To achieve these goals, we have built an object-oriented software framework that provides
programmers with basic ready-made components, as well as an infrastructure for compos-
ing, interconnecting, and extending these objects. In this section, we examine the design
of this framework, and discuss the approach we take in achieving our goals.

3.2.2 System Design

To maximize flexibility and programmability, the Bayanihan framework employs a highly
object-oriented design. In addition to using Java’s built-in object-oriented features, we
use HORB [68], a distributed object package similar to Sun’s RMI [144], that hides the
details of network communications from programmers, and allows them to use objects on
separate computers as if they were all on the same computer. HORB was chosen over RMI
because it does not require JDK 1.1 (which was not as ubiquitous as JDK 1.0 for several
years), is easier to use [65], and is faster [69, 162]. By using HORB to access remote objects
transparently without worrying about communication details, we are able to utilize object-
oriented techniques to enable programmers to experiment with different approaches to
research issues by “mixing-and-matching” objects in various ways.

The Bayanihan framework defines a set of interacting components that can be extended
and composed to build Bayanihan systems such as the one shown in Fig. 3-1. Bayanihan
systems are composed of many clients connected to one or more servers.
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Figure 3-1: A Bayanihan system with worker and watcher clients.

In Bayanihan, a client3 can either be a Java applet started from a web browser, or a Java
application started from the command line. There can be different kinds of clients, such
as worker clients for performing computation, and watcher clients for viewing results and
statistics. Each client has an engine that takes care of receiving and processing data objects
from its corresponding manager on the server through remote method calls to its advocate
on the server side. Both the engine and the data have associated GUI objects which can be
used for user interface. Data objects are generally polymorphic and know how to process
themselves. The engine and the GUIs are all contained in a chassis object, which can be an
applet or application. A worker client, for example, could be an applet chassis containing a
work engine which takes care of getting work data from the work manager, processing it,
and requesting more work when it is done. To process the work, the work engine calls the
work data’s doWork() method, passing it pointers to itself and the work GUI. The work
data then computes itself, using the work engine to communicate with the work manager,
and the work GUI to report its progress status to the the user.

A server typically contains a commodity HTTP server for serving out Java class files,
and a command-line Java application that creates one or more project objects, each contain-
ing various objects belonging to separate ongoing computations. To join a computation,
a volunteer uses a standard Java-enabled web browser to visit a web page that contains a
chassis applet. The chassis applet connects to the server’s project table, which contains a
list of available projects. After selecting a project and an engine type (e.g., worker, watcher,
etc.) the chassis retrieves the appropriate engine and GUI classes and starts executing the

3In some other systems such as Javelin [23], the term client is reserved for the user who wants a computation
to be done and who will receive the results, while the term hosts is used to refer to volunteers who do the work.
In Bayanihan, we will use the term client in the more traditional sense of clients in a client-server systems. This
terminology is also used by SETI@home and other systems. In Bayanihan, it is actually even more appropriate
because a client does not have to be a volunteer. A client can refer not only to workers, but also to watchers, as
well as to clients in the Javelin sense.
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engine on the client side. The engine then connects and registers with the server, which cre-
ates a server-side advocate4 object to represent the client. This advocate goes between the
engine and other server-side objects such as managers, and forwards the engine’s remote
calls to the server-side objects and vice-versa. It also contains client-specific information
that the server-side objects may want to use, such as its server-assigned processor ID (PID),
its hostname, processing speed, etc. In general, a manager object takes care of distributing
to and collecting data from its client engines. It typically has access to several data pools,
which may be shared by other managers serving other purposes. Different managers and
work pools can serve different purposes. For example, a work manager would take care
of things such as distributing unfinished work to a worker client, while a watch manager
would take care of serving results. Finally, each project has a program object, which creates
and controls managers, data pools, and data. The program may be active, i.e., running in
its own thread, or passive, i.e., only reacting to callbacks from other objects, such as when
the work manager runs out of data and asks for more.

Figure 3-1 shows an example of a Bayanihan system with one server and four clients
(two workers and two watchers). The work engines request work data from the work
managers, compute them, and then send result data back to the work manager. The work
manager then gives these results back to the program object, which can process them and
report status information to watchers by placing watch message data objects in the watch
pool. The work and watch pools are shared by the work and watch managers, allowing
the watch manager to watch the progress of the computation and inform watch engines of
such things as new results and statistics.

3.2.3 Multi-level Flexibility

The highly object-oriented design of the Bayanihan framework enables it to provide multi-
level flexibility and extensibility not provided by many simpler volunteer computing
frameworks. By allowing programmers to vary objects in the framework independently of
others, Bayanihan not only allows users to write a wide variety of applications, but also al-
lows them to implement the underlying generic components in different ways. This allows
researchers to develop and experiment with different ways of addressing issues such as
fault-tolerance, adaptive parallelism, and scalability, and makes the Bayanihan framework
a good tool for volunteer computing researchers.

Consider the Bayanihan system shown in Fig. 3-1, for example. To write an application
for such a system, a programmer need only define new subclasses or implementations of
the application-specific components shown as double-bordered boxes (i.e., the program ob-
ject, the work and result data objects, and the GUIs). In this way, application programmers
can write a wide variety of applications that assume the particular programming model
implemented by the existing engine, manager, and data pool objects. Chapter 4, for exam-
ple, shows how we can write a variety of applications all using the same master-worker
programming interface and implementation.

4A more standard name for this object might be proxy, after the Proxy design pattern [52]. However, we
choose to use another name for two reasons: (1) the term proxy already refers to something else in Java and
HORB, and (2) an advocate is not limited to forwarding method calls but can keep its own information and
act on its own, unlike the simple proxies described in the original Proxy pattern.
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Bayanihan’s flexibility goes beyond just allowing programmers to write a variety of
applications, however. By writing new subclasses or implementations of the generic com-
ponents shown in Fig. 3-1 as shaded boxes (i.e., the managers, data pools, advocates, and
engines), programmers can implement and experiment with new generic functionality and
mechanisms. For example, researchers can experiment with performance optimization by
writing work manager objects with different scheduling algorithms. Similarly, as will be
shown in Sect. 3.5.2, we can implement the different fault-tolerance mechanisms discussed
in Chap. 6, such as voting and spot-checking, by simply changing or extending the man-
ager, data pool, and advocate objects. Programmers can even implement entirely new
parallel programming models by creating new sets of engines, managers, and data pools.
As an extreme example, in addition to writing volunteer computing systems, we have
also used the Bayanihan framework to write multi-user messaging applications, including
multi-user chat, shared whiteboard, and ICQ-style messaging applications.5

3.2.4 Using the Framework

By taking advantage of this multi-level flexibility, we have been able to use Bayanihan not
only to demonstrate the benefits of web-based volunteer computing and to write useful
applications, but also to develop new mechanisms for addressing a number of technical
issues. In the rest of this chapter, we discuss how we have done so, and present our results.

3.3 Ease-of-Use and Accessibility

As a web-based and Java-based system, Bayanihan greatly increases accessibility and ease-
of-use for volunteers, and allows us to do things previously impossible with traditional
metacomputing systems and application-based volunteer computing systems. In this sec-
tion, we show how Bayanihan implements the idea of web-based volunteer computing
and discuss our experiences in using it and benefitting from it.

3.3.1 Volunteering

Volunteering to join a Bayanihan system as a worker is very easy, and requires no technical
knowledge beyond that of using a web browser. To volunteer, all a user has to do is:

1. Go to the web site running the application he or she wants to join,
e.g., http://bayanihan.lcs.mit.edu/ .

2. Select the link for the desired application, choosing the worker applet.

3. Press the “Start” button on the chassis applet on the web page, once it appears.

At this point, an applet window with the work GUI appears, and the work engine itself
connects to the server and starts doing work. Figure 3-2 shows an example where a user
has started a work engine for the brute-force factoring application described in Sect. 4.2.1.
As it runs, the work GUI displays progress information and local timing statistics. Once

5These were joint work with Mark Bucayan, Jerome Punzalan, and Eric Vidal [21].



52 CHAPTER 3. THE BAYANIHAN WEB-BASED VOLUNTEER COMPUTING SYSTEM

Figure 3-2: Volunteering as a worker using Bayanihan.

the work engine has started running, the user can then minimize the applet window and
let it run in the background. The user can even leave the original web page and visit
other web sites, and the work engine would continue to run in the background as long
as the browser itself is still running. To stop the work engine, the user can simply close
the applet window. Alternatively, the user can press the “Pause” or “Stop” buttons on the
chassis applet.

Bayanihan also has an auto-start option, which allows the work engine to be started
automatically without requiring the user to press “Start”. This makes volunteering even
easier and faster, and also makes redirection possible as described below. To give the user
control over the applet after it starts, the normal “Start”, “Pause” and “Stop” buttons still
allow the user to stop and restart the engine. Potentially, however, auto-start applets can
also be used for “cycle thief” work engines that do not have GUI components and can
remain invisible to the user. These applets, inserted in a web page, will start automatically
and keep working even after the user leaves the web page, as long as the user’s browser is
still running. Although we do not encourage the use of such applets, they do represent the
ultimate in ease-of-use, since a user does not even have to be conscious of volunteering.
They may also have legitimate applications in contract-based systems such as described in
Sect. 2.2.4.

By default, the work engine runs in the lowest priority setting available. In most op-
erating systems, this is idle priority, which means that the work engine only runs at times
when there are no other programs needing the processor. This is the same priority set-
ting used by distributed.net and other systems, and generally works very well. At this
setting, the work engine does not noticeably slow down other applications. At the same
time, however, it keeps the CPU fully utilized while the user is idle and can achieve almost
full speed even while the user is using programs such as word processors, and other non-
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computationally intensive programs. If necessary, Bayanihan also supports changing the
priority level of the work engine. When running the fault-tolerance simulator on the MIT
Athena workstations (as described in Sect. 4.6.4), for example, we used normal priority so
that the work engine gets priority over the screen saver, which ran at low (but non-idle)
priority when the machines were unattended.

If a Bayanihan work engine gets disconnected while it is running – e.g., because of
network failure or server failure – it would automatically try to reconnect to the server
periodically until it succeeds. When the network connection or the server comes online
again, the work engine then continues doing work in a new session. This means that a
user need only start the work engine once, and it will keep running despite network or
server failures as long as the user does not exit the browser application. (Note that in the
current implementation, when a worker gets disconnected, it loses the current work that it
is doing, and starts working on an entirely new object when it reconnects. Bayanihan does
not yet support disconnected operation as SETI@home does.)

Through this reconnection mechanism, Bayanihan also supports having the work en-
gine switch applications automatically without requiring the user’s intervention. Cur-
rently, we can do this by stopping the server, and restarting it with a new application.
Doing this will cause the workers to disconnect when the server stops, and then reconnect
and start working on the new application when the server is restarted. In the future, we
may also allow a worker to switch applications without having to disconnect and recon-
nect. This can be done by simply giving it work objects for different applications. We do
not yet support this feature since the advocate and manager objects in the current imple-
mentation can only be used with one work pool (and thus one application) at a time.

Finally, Bayanihan also supports automatic redirection of a work engine to another ap-
plication on another server. We can do this despite the applet security restrictions against
establishing TCP/IP socket connections with other servers by making use of the show-
Document() function in Java applets, which allows an applet to ask its parent browser
to display a web page given a URL. To have a work engine reconnect from server A to
server B, for example, we send the engine a special RedirWork object, which calls show-
Document() to have the browser show server B’s web page. Server B’s web page would
have an auto-start applet that would then be run automatically as server B’s page is dis-
played. Since this applet is now coming from server B, it can safely connect to server B
even with security restrictions in place. Meanwhile, RedirWork causes the original applet
from server A to quit and stop working in the background. This completes the changeover
from server A to server B.

3.3.2 Watcher Applets and Interactive Parallel Computing

In addition to providing worker applets that allow users to volunteer their computing
power, Bayanihan also provides watcher applets that make interactive parallel computing
possible by not only letting users view the results of a computation as they are received,
but also letting them control the computation even as it happens.

Figure 3-3, for example, shows the corresponding watcher applet for the brute-force
factoring application. Here, the watcher applet displays the list of factor pairs found so
far, and also displays timing information. At the same time, the watcher applet also allows
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Figure 3-3: Watching results and controlling the computation using a watcher applet.

the user to change the target number by entering a number in the box and pressing “Submit
Request”. In response to such a request, the server would immediately stop working on
the current target number, and start working on the new one. A more complex example
involving image rendering is also shown in Sect. 4.3.1, where the user interfaces allows the
user to use the mouse to interactively zoom in and zoom out of the image being drawn.

As far as we know, Bayanihan is the first, if not the only, volunteer computing sys-
tem to allow real-time control and to support interactive parallel computing in this way.
Other volunteer computing systems display results as they get them, but do not have easy
support for making interactive requests as Bayanihan does.

3.3.3 Practical Results

Bayanihan’s ease-of-use has made it possible for us to set up parallel computing networks
much more quickly and easily than possible with traditional metacomputing systems and
application-based volunteer computing systems such as SETI@home.

For example, we have done demos at several conferences and seminars where we set
up a volunteer computing network on the spot and have it start running the Mandelbrot
renderer application (described in Sect. 4.3.1) using whatever workstations are available in
the seminar room. In these demos, we install a web server and the Bayanihan server on
a laptop beforehand. Then, at the demo site, we connect the laptop to the local network
using DHCP (which automatically configures the laptop to connect to the network). Once
the laptop is connected, starting a parallel computation is then simply a matter of start-
ing a web browser on each machine and pointing it to the web site on the laptop. (If the
audience has the computers in front of them, we ask the audience themselves to volun-
teer the machines by themselves.) The whole process takes only a few minutes, and the
resulting parallel network achieves near linear speedups given enough granularity in the
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computation.
Beyond demos, Bayanihan has proven itself in real applications as well. For example,

it allowed us to get much needed speedups for running the fault-tolerance simulator (see
Sect. 4.6.4), by allowing us to use up to 50 machines on MIT’s campus network (run at
night when no one was using them). A significant advantage in this case, was not only
the fact that we did not need to install software on the machines, but even more so that
we did not need to uninstall software afterwards. This not only relieved us from having
to clean up after experiments, but also made it easier for us to ask friends and colleagues
to volunteer their machines by reassuring them that it would only be temporary and that
they would not have to clean up afterwards.

The reconnection and redirection features of Bayanihan also proved useful when run-
ning the fault-tolerance simulations. These allowed us to keep machines running for weeks
at a time without requiring volunteers to restart their work engine (i.e., they started their
browsers once and left them running in the background at idle priority). During these
weeks, we were able to restart the server several times and run it with different param-
eters and even with new computational code (by defining new work object subclasses).
Occasionally, we even had the workers switch to the Mandelbrot application and back to
the fault-tolerance simulator using redirection.

3.4 Programmability and Applicability: Writing Applications

In addition to making it easier for users to volunteer their machines, Bayanihan also makes
it easier for programmers to write a variety of applications. In this section, we describe the
implementation of a runtime system for Bayanihan that provides the underlying mech-
anisms for running interactive master-worker style applications, as well as a number of
programming interfaces that allow programmers to write different applications on top of
this runtime system. In Chap. 4, we present several applications that we have actually
implemented using these APIs.

3.4.1 The Generic Master-Worker Runtime System

Basic Components

Figure 3-4 shows the components of the Bayanihan runtime system and the interactions
between them.

As shown, the generic MWProj project object on the server side contains a set of generic
managers and data pools for implementing the master-worker model. The project also
creates and starts an application-specific program object (specified through the project’s
configuration file) by calling its startProgram() method, which then fills the work pool
with work data objects in its createNewBatch() method.

Each volunteer machine runs a work engine, which runs in a loop, repeatedly mak-
ing remote calls to the getWork() method of its corresponding work advocate on the
server. Each work advocate passes these calls to the work manager, which takes care of
distributing work contained in the work pool to the workers.6 As it calls the manager, each

6In older versions of Bayanihan, the work manager was actually a single object. In the current version,
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advocate also passes a pointer to itself to allow the manager to identify it and call it back
if desired.

In response to a call to getWork() , the work manager returns the next available un-
completed work data object in the work pool. The work engine runs this work object by
calling its doWork() method, which returns a result object. Finally, it sends the result back
to the work manager by calling the advocate’s finishWork() method.

As the work manager obtains a final result (i.e., a result after voting, if voting is en-
abled) for each work entry, it associates each result with its corresponding work entry in
the work pool and marks the work entry done. At the same time, it calls the result-
Finalized() method to notify the program of the new result, and to give it a chance
to process the result and post a corresponding watch message onto the watch pool, if de-
sired. When all the work in the pool have been done, the work manager calls its program
object’s allDone() method. In this method, the program can process the results, and start
the next stage of the computation, if any, by refilling the work pool with new work and
calling startNewBatch() . (By default, allDone() calls createNewBatch() .) This
implements a simple form of barrier synchronization, where a new batch is not started
until the previous one is completely finished.

Support for Interactive Parallel Computing

Users can view results and statistics as well as control the computation, as described in
Sect. 3.3.2, through watcher clients that communicate with the watch manager on the
server. A watcher client’s engine runs in a loop, periodically requesting the watch man-
ager for a list of new watch messages which may have been posted by the program onto
the watch pool. Any watch messages it receives (which typically contain result objects) are
then passed to the watch GUI, which displays them accordingly.

The watcher client also allows the user to send request objects to the watch manager
via the makeRequest() method. When the program object receives the request, it can, if
desired, immediately call reset() on the work and watch managers (causing the work
and result pools to be cleared), and then create and start a new batch according to the
request object.

3.4.2 Writing Applications: The Basic APIs

To write an application, programmers need to create classes that define appropriate meth-
ods in the application-specific objects shown in double-bordered boxes in Fig. 3-4. Ap-
pendix A contains an example with the source code for the brute-force factoring appli-
cation described in Sect. 4.2.1.

Of the classes that a programmer needs to define, the two key classes are the work and
the program classes.

the responsibility of the work manager has been divided among several objects for greater modularity and
flexibility. For simplicity, we will refer to these objects together as if they were still just one work manager
object.
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Work objects. The work object class contains the computational code that runs on each
volunteer worker’s machine. Each instance of a work object contains the code and data
for an independent subpart of a parallel step – e.g., a subrange to be searched in a brute-
force search (see Sect. 4.2), or a particular parameter configuration in a parametric analysis
(see Sect. 4.6). The data are stored in the fields of the object, while the code is defined
in the doWork() method. Thus, the doWork() method should be written to take the
values of the appropriate fields, perform the desired (sequential) computation according
to these initial values, and then return a result object, which can be of any type. In the
factoring application, for example, a FactorWork object (as shown in Sect. A.1.1 searches
for factors of the target number target , within a subrange, [first . . . last ]. It therefore
contains the long fields, target , first , and last , and its doWork() method contains
a loop searching for factors within that range.

Passive-style programs. The program object is responsible for creating batches of work ob-
jects, and interpreting the results they return. Typically, a program would create one batch
of work by adding work to the work pool, start the batch by calling startNewBatch() ,
and then wait for the batch to be completed. Then, it processes these results and creates a
new batch of work, possibly depending on the results of the previous batch.

The most basic way to write a program object is in passive style, wherein the program
does not have a thread of its own but only reacts to method calls from other objects, as de-
scribed in Sect. 3.4.1 – e.g., calls to startProgram() from the project object, allDone()
from the work manager, and handleRequest() from the watch manager. In this case, a
programmer must define allDone() to respond to the end of the batch and create a new
batch.

Passive style is easy to use if the program does exactly the same thing in each batch, ex-
cept possibly for a change in parameter or configuration values. In the factoring example
shown in Sect. A.1.5, for example, the code for filling in a batch is always the same and can
be encoded in createWork() , which is called in allDone() (via createNewBatch() ).
In applications where the batches are different, however, such as the fault-tolerance sim-
ulator, then passive style is difficult to use, since it would require that allDone() have
some sort of if or switch statement to determine which batch to start next.

Active-style programs. To handle such cases, Bayanihan also provides a slightly higher-
level API layer for active-style programs. In active-style programs, the programmer de-
fines a run() method which is run in its own thread when startProgram() is called. In
the run() method the programmer creates batches by adding work to the work pool, and
then starts them by calling startNewBatch() . At this point, unlike in passive-style pro-
grams, the program continues to run in its own thread. To wait for the batch to complete,
the program calls waitForAllDone() , which blocks until the batch is completed. At this
point, the program can then process the results, create a new batch, and start it again.

The advantage of active-style programs is that they allow the code in run() to look like
sequential code. With active-style programs, programmers can hide the calls to start-
NewBatch() and waitForAllDone() in convenience methods, and thus provide “par-
allel methods” that look like ordinary method calls but actually perform computation in
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parallel. Section A.1.6, for example, shows an active-style version of the factoring program,
wherein we have a doParallelFactor() parallel method. The doBatch() method of
the Monte Carlo API, as discussed in Sect. 4.6.2 and shown in Sects. A.2.4 and A.3.1, are
other examples of parallel methods.

In active-style programs, programmers can process results at the end of the batch (i.e.,
after waitForAllDone() but before the next startNewBatch() ), or on-the-fly through
the use of a ResultListener -type object. Both of these types of result processing are
shown in the example in Sect. A.1.6. Requests can also be handled at the end of the batch
through a request queue (not shown in the examples), or on-the-fly by having the program
call waitForRequest() instead of waitForAllDone() , as shown in Sect. A.1.6. If no
request is made, then waitForRequest() blocks until the batch is done (just like wait-
ForAllDone() does), and returns null . If a request is made before the batch is done,
however, then waitForRequest() immediately returns with the request object. The pro-
gram can then handle the request and decide whether to continue the current batch, or to
stop it and start a new one. In this way, we can achieve interactive parallel computing.

3.4.3 Application Frameworks and Other APIs

In addition to using the passive-style and active-style APIs directly, the object-oriented
design of the Bayanihan framework and APIs make it easy to develop more specific appli-
cation frameworks that provide support for writing families of similar applications. For ex-
ample, extending the Mandelbrot application, we have written an application framework
for rendering in general, which we can use in the future for depicting other fractal objects
(e.g, the Julia set), as well as for rendering 3D images. In this framework, the programmer
can reuse common objects such as the GUIs and would simply have to write the code for
computing the color of each pixel. Other examples of application frameworks we have
written include ones for Monte Carlo simulations and genetic algorithms, as described in
Chap. 4.

Furthermore, we can also write other APIs that are more general-purpose than applica-
tion frameworks, but still use the same underlying runtime system. Examples of these are
the Bayanihan BSP programming interface presented in Chap. 5, which is actually built
on top of the active-style API but provides the user with an even easier-to-use are more
powerful programming interface.

3.5 Developing Generic Mechanisms

Finally, Bayanihan’s highly flexible design not only makes it easy to write specific ap-
plications, but also makes it easy to develop generic mechanisms that apply to volunteer
computing applications and systems in general. In this section, we show how we have
used Bayanihan’s flexibility to address the issues of adaptive parallelism, reliability, and
scalability. In the rest of this thesis, we present other new techniques and technology that
we have developed with the help of the Bayanihan framework.
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Figure 3-5: Eager scheduling in Bayanihan. (a) P3 calls getWork() after works 1 and 2 are
assigned to P1 and P2; P3 gets work 3. (b) P1 crashes or is slow; work 1 gets reassigned to
P2 after P2 finishes work 2.

3.5.1 Adaptive Parallelism

Eager Scheduling

Generally, adaptive parallelism can be implemented by writing work managers that fol-
low appropriate scheduling strategies. In our master-worker runtime system we employ a
simple form of adaptive parallelism sometimes called eager scheduling [34] (also discussed
earlier in Sect. 2.3.2). In our implementation of this scheme, as shown in Fig. 3-5, each work
object has a done flag which is set when a worker returns the result for that object. The
work objects are stored in a circular list, with a pointer keeping track of the next avail-
able uncompleted work. In Figure 3-5(a), for example, the nextUnDoneWork pointer is
pointing to work 3 after works 1 and 2 have been assigned to work engines P1 and P2 re-
spectively. Thus, when work engine P3 calls getWork() , it receives work 3. Since workers
call getWork() as soon as they finish their current work, faster workers will tend to call
getWork() more often, and will thus get a bigger share of the total work. In this way, we
get a simple form of dynamic load balancing.

Moreover, since the list is circular, nextUnDoneWork can eventually wrap around and
point to previously assigned but uncompleted work, allowing a piece of work to be reas-
signed to other workers. This “eager” behavior guarantees that slow workers do not cause
bottlenecks – fast workers with nothing left to do will simply bypass slow ones, redoing
work themselves if necessary. It also provides a basic form of crash-tolerance. In Fig. 3-
5(b), for example, we see that when P2 finishes work 2 and calls getWork() , it receives
work 1, which has not been marked done because P1 has crashed (or is simply slow). In
this way, computation can go on as long as at least one processor is still alive. In fact,
even if all the processors crash, the computation can continue as soon as a new processor
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Figure 3-6: Two approaches to fault-tolerance: (a) Majority Voting, (b) Spot-checking.

becomes available.

Other Possibilities

Other forms of adaptive parallelism can be implemented with the master-worker runtime
system as well. For example, we have written MultiWorkEngine and MultiWorkMan-
ager subclasses that implement a getMultiWork() function for prefetching multiple
packets of work. As described in Sect. 4.5.1, these have proven useful in our distributed
web-crawler application for improving performance by hiding communication latency.
They have also been useful in implementing volunteer servers, as described in Sect. 3.5.3.

Potentially, Bayanihan can be used for implementing other forms of adaptive paral-
lelism as well. For example, one can conceivably implement PVM-like functionality [54]
by writing a work engine that functions like a PVM daemon, and writing PVM-like pro-
grams or tasks as work data objects. The work data objects would depend on the work
engine to provide message-passing and task-spawning capabilities. The work engine may
implement message-passing directly (if it has no network restrictions), or it can forward
the responsibility to the manager (if restricted applets are used). The manager can then
route messages to the appropriate work engines and work data on other machines. Of
course, PVM is a bad example since it is not adaptive. However, we use it here as an
extreme case – i.e., if you can implement PVM, then implementing other programming
models (e.g., Linda [26], Cilk [17]) is at least as easy, since PVM (and message-passing in
general) can implement these.

3.5.2 Reliability

By extending the eager scheduling work manager and work pool objects as shown in Fig. 3-
6, we have written implementations of the majority voting and spot-checking mechanisms
described in more detail in Chap. 6.
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We implement majority voting by using a new subclass of MWWorkPool, FTWorkPool ,
where the done flag of a work object remains unset as long as a majority agreement with
m matching results has not been reached. In Fig. 3-6(a), for example, works 0 and 3 have
reached a majority agreement and are marked done, while works 1 and 2 are still consid-
ered undone. (To allow results to be compared to each other, programmers must imple-
ment the hasSameValue() method in their result objects.)

Our spot-checking implementation, shown in Fig. 3-6(b), works as follows: at the be-
ginning of each new batch of work, the SCWorkManager subclass randomly selects a work
object from the work pool and precomputes its result. Then, whenever a work engine calls
getWork() , the work manager returns this spotter work with probability q called the spot-
check rate. In this way, the work manager can check the trustworthiness of a worker by
comparing the result it returns with the known result. If the results do not match, the
offending worker is blacklisted as untrustable, and the work manager backtracks through
all the current results, invalidating any results dependent on results from the offending
worker.

Table 3.1 shows results from an experiment using these two fault-tolerance mecha-
nisms. In this experiment, we created a saboteur work engine that always corrupts results
in a fixed way7. We then ran the Mandelbrot application (on the “spiral” range with depth
1037 from Sect. 4.3.1), with 5 good workers and a varying number of saboteurs. To keep
the pool of saboteurs from being completely eliminated by spot-checking, we did not en-
force blacklisting, and allowed caught nodes to reconnect after a 1 second delay under a
new identity. We did, however, enforce backtracking, such that all results submitted by a
saboteur under the same identity are invalidated once a saboteur is caught. For each con-
figuration, we ran 10 rounds, measuring the average running time and the average error
rate (err). From these, we computed the efficiency of each configuration by first multiply-
ing the ideal time (measured with 5 good workers, no saboteurs and no fault-tolerance) by
the fraction of correct answers (1− err), and then dividing the result by the actual running
time. This estimates how efficiently the good workers are being utilized towards producing
correct final answers.

As shown, majority voting performed as expected, having an error rate close to the the-
oretical expected value of f2(3− 2f) for m = 2 majority voting (where f is the fraction of
workers who are saboteurs, and where we assume that saboteurs agree on their answers).
Although this error rate is large for the values of f shown, it should improve significantly
in situations where f is small, since it is proportional to f2. The bigger problem with vot-
ing is its efficiency, which, as shown, is at best only about 50% since all the work has to be
done at least twice even when there are no saboteurs. In this respect, spot-checking per-
formed more promisingly. As shown, its efficiency loss was only about q when the number
of saboteurs was small, and, thanks to backtracking, its error rates remained relatively low
– even when there were more saboteurs than good workers. In a real system where black-
listing is enforced, we can expect even lower error rates. As shown, saboteurs were being
caught at a high rate – as many as 64 saboteurs every 31 s in one case. This means that un-
less saboteurs can somehow assume a very large number of false identities (e.g., by faking
IP addresses or digital certificates) and switch between them dynamically and quickly –

7That is, the sabotage rate s (defined in Sect. 6.3.1) is 1, and bad results for the same work object match such
that saboteurs can vote together
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Table 3.1: Results from preliminary fault-tolerance experiments.

# bad 
(plus 5 
good)

f        
(% 
bad)

ave 
time 
(s)

eff 
(%)

ave 
err 
(%)

ave 
time 
(s)

eff 
(%)

ave 
err 
(%)

ave # 
caught

ave 
time 
(s)

eff 
(%)

ave 
err 
(%)

ave # 
caught

0 0 40.4 52 0 23.1 90 0 0 26.2 79 0 0
1 16.7 40.6 51 0 22.7 89 3.0 4.8 26.1 79 1.4 8.4
2 28.6 36.1 48 17 22.8 86 6.0 8.8 27.2 75 2.2 18
3 37.5 32.2 45 30 21.2 86 12 11 28.5 71 3.3 28
4 44.4 28.6 43 41 22.4 84 10 15 29.4 68 3.8 38
5 50.0 26.3 40 50 21.5 80 17 19 30.1 66 4.0 48

7 58.3 21.9 36 62 21.5 77 20 28 31.0 63 5.9 64

ideal time   
20.8 s

Voting     
(m =2, r =3)

Spot-checking & backtracking, no blacklisting
p =10% p =20%

a highly unlikely scenario – they would quickly get eliminated, and the error rate would
decrease rapidly in time.

Figure 3-7 shows a screenshot of the Mandelbrot application with spot-checking en-
abled (together with backtracking but without blacklisting as described above). In this
case, we have two workers and one saboteur.8 Here, as in Sect. 4.3.1, the color of the bor-
der of each block represents the worker which worked on that block. The blocks with
the X-like pattern are blocks from the saboteur, who is trying to sabotage the computation
by submitting erroneous images. The blocks with circles represent results that have been
invalidated by backtracking because the worker that submitted them has gotten caught.
As shown, in this case, the saboteur has currently gotten away with submitting five erro-
neous blocks under its current identity without getting caught yet. Note, however, that
it has been caught a number of times under its previous identities, as evidenced by the
invalidated results. If it gets caught in the future, then the five erroneous blocks shown
here would also be invalidated.

To study the effectivity of these fault-tolerance mechanisms even better, we have also
developed a parallel fault-tolerance simulator running on Bayanihan, as described in Sects.
4.6.4 and 6.5.1. This simulator uses adapted versions of the same work pool implementa-
tions used in this experiment, but uses simulated workers instead of real machines doing
real work. This allows us to test the fault-tolerance mechanisms on a much larger number
of workers, saboteurs, and work objects than possible in a real experiment. In this way, we
have been able to extend the results of the experiment shown here, and test the effects of
blacklisting, as well as that of varying the sabotage rate and many other factors, as shown
in Sect. 6.5.1. The results we got from these simulations in turn led us to the new and
highly generalizable idea of credibility-based fault-tolerance, described in Chap. 6.

8The machines used here were different and slower than the ones used in Sect. 4.3.1, so the timing results
are not comparable.
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Figure 3-7: A screenshot of the Mandelbrot application with spot-checking enabled.

3.5.3 Scalability

Due to security restrictions, Java applets can only communicate with the web server from
which they were downloaded. This forces browser-based volunteer computing networks
into star topologies with the server in the middle, and can potentially lead to high congestion
and limited scalability.9 To address this problem, we have developed a simple volunteer
server system that volunteers can download and run as a Java application (together with
an HTTP server for serving out the applets and web pages to the clients). This application
creates a generic VSProgram object whose createNewBatch() method does not create
new work on its own, but instead calls getMultiWork() (as described in Sect. 3.5.1) to
requests groups of work objects from the main server, and then places these work objects
in its own work pool to serve its clients. Correspondingly, its allDone() method sends
the results back to the main server and calls createNewBatch() to get more work.

Figure 3-8 shows how volunteer servers can help improve a system’s performance and
scalability. Consider the scenario shown in Fig. 3-8(a), where some volunteers are slowed
down by delays due to congestion or some other constraint of the server link (e.g., the
server may be in a different country). In such a situation, we can improve overall running
time by having the workers connect indirectly through volunteer servers with faster links
(e.g., uncongested servers, or servers in their own countries), as shown in Fig. 3-8(b).

Table 3.2 shows results from an experiment simulating these scenarios using a
28.8 Kbps modem link for the slow link, and 10Mbit Ethernet for the fast link. Note that

9We say “potentially” because it is possible to have a star topology and still support a large number of
users. This has been demonstrated by SETI@home, which employs a star topology with one or a few central
servers at Berkeley, but has nevertheless been able to successfully handle hundreds of thousands of users.
However, SETI@home has also experienced congestion problems at times, which shows that having a more
scalable topology would be ideal and preferrable even in these cases.
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Table 3.2: Running the Mandelbrot application with a volunteer server.

time (s)          
with 5 workers

main server 
on fast link

main server 
on slow link

volunteer server on fast link, 
main server on slow link

without watcher 5 198 125
with watcher 5 233 124

although the computation took only 5 s with the main server on a fast link, it took almost
200 s when the main server was placed on a slow link, as workers were forced to wait idly
while the server received their results and sent them new work through the slow link. To
address this problem, we used one volunteer server to act as a “cache” between the main
server and the workers, using the fast link as shown in Fig. 3-8(b) to allow them to work
at full speed without idling. As shown, this reduced the total running time to 125 s, of
which the first 5 s were spent by the workers to do the computation, and the remaining
120 s by the volunteer server to send all the results back to the server through the slow
link. The volunteer server also allowed watchers to be added without further congesting
the slow link and slowing down the computation. These results demonstrate how volun-
teer servers can enable us to overcome congestion and long latencies by exploiting locality
and parallelism in communications.

Currently, we do not have a way to automatically direct clients from the main server
to an appropriate volunteer server. If we can develop mechanisms for load balancing,
however, then we can use the redirection technique mentioned in Sect. 3.3.1. This is future
work that remains to be done.
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3.6 Conclusion

In this chapter, we have presented the Bayanihan web-based volunteer computing system,
and have shown how it has made volunteer computing easier not only for users but for
programmers and researchers as well. We conclude this chapter by looking at our results
in the context of related work and suggesting possible directions for future research.

3.6.1 Related Work

Java-based parallel computing. Bayanihan is actually just one among a growing number
of Java-based parallel computing systems that have independently been developed since
the original release of Java by Sun in 1995. Since 1997, for example, many papers on using
Java for parallel computing have been presented at various conferences [3, 4, 5].

Most of the earliest projects, such as ATLAS [11], Paraweb [19], and JPVM [47], and
many of those that came after, such as IceT [61], Java// [25], Ninflet [146], DOGMA [77],
Manta [109], Parabon [113], and others, use Java applications that are run from the com-
mand line. Being application-based systems, these do not enjoy the same level of ease-
of-use and accessibility as applet-based systems. In fact, most of these are not actually
volunteer computing systems, but are more like Java-based versions of traditional NOW
or metacomputing software like PVM or MPI. Their main advantage over traditional sys-
tems, is the portability and programmability that Java brings.

Projects that implement web-based volunteer computing by using applets seem to be
fewer. Early systems include simple ad hoc ones such as the University of Washington
factoring applet [154] (which inspired our factoring application), DAMPP [151], the RC5
cracking project [57], and more complex general-purpose ones such as Charlotte [12, 80,
14], the original versions of SuperWeb/Javelin [6, 23] (newer versions of Javelin [104, 106]
now use applications, not applets), and JET [111]. More recent ones include SWC [8] and
the gamma flux project [75] that is now part of Process Tree [121]. One reason that applet-
based systems are fewer than application-based systems is that Java’s security restrictions
make peer-to-peer communication – and thus traditional MPI-like systems – impossible
to implement. Also, applet-based systems need to support autonomous volunteers who
can leave and join the system at any time. Thus, developing general-purpose applet-based
systems is harder in general because it requires developing and using new programming
models. On the other hand, applet-based systems are much more accessible and easier to
use than application-based systems, and thus have the potential for allowing us to build
larger systems in a shorter amount of time, as demonstrated in Sect. 3.3.3.

Applicability, Programmability, and Flexibility. Although some of these systems are ad
hoc, such as [154, 57, 75], many of them are general-purpose, and allow programmers to
write a variety of applications, as Bayanihan does. Most of these systems, however, pro-
vide only one way of writing programs, while Bayanihan provides several. In addition to
allowing programmers to use the passive-style, active-style, and BSP-style APIs, Bayani-
han also provides application frameworks such as the rendering, genetic algorithm, and
Monte Carlo frameworks. Moreover, Bayanihan also makes it easy for programmers to
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create their own APIs and application frameworks by extending and building on top of
existing APIs and application frameworks.

Bayanihan is also among the first systems to use a distributed object framework for
communications. Most earlier systems performed communications by handling TCP/IP
sockets directly. By using HORB, Bayanihan enables programmers (including ourselves) to
focus on the object-oriented design of the system instead of the low-level communication
details, and not only saves them a lot of development time and effort, but also makes more
complex interactions between the server-side and client-side objects possible. Others have
since also independently recognized the advantages of using distributed objects, and have
designed (or redesigned) their systems using RMI (e.g., see [104, 13, 77, 109]), or CORBA
(e.g., see [81, 120]).

Perhaps the most distinguishing feature of the Bayanihan framework, however, is the
flexibility that it provides researchers and implementors of volunteer computing systems.
Although other systems may have their own way of addressing the issues of programma-
bility, adaptive parallelism, fault-tolerance and scalability, they usually only have a single
set of mechanisms which programmers are required to use. In contrast, Bayanihan has
been intentionally designed from the beginning to allow programmers to extend the pro-
vided mechanisms and even to create their own. As shown in Sect. 3.5, and in the rest
of this thesis, this flexibility has allowed us to explore the field of volunteer computing
more broadly than possible in other systems. In addition to allowing us to implement and
further develop well-known ideas such as eager scheduling and volunteer servers, it has
also allowed us to discover and develop unique new ideas such as the BSP programming
interface and the fault-tolerance mechanisms discussed in Sect. 3.5.2 and Chap. 6.

3.6.2 Future Work

The results shown in this chapter and in the rest of this thesis represent only the begin-
ning of much more possible research. Possible future work on the Bayanihan system and
framework include the following:

• Better volunteer and server management infrastructure. Although our current in-
frastructure has already allowed us to run campus-wide experiments as described in
Sect. 3.3.3, it still lacks some features needed for deployment to the general public.
Currently, we do not keep track of user identity and contact information, or pro-
vide access control to the client applets. It would also be good to provide server
administrators with an interface allowing them to monitor the availability of worker
machines and to stop, restart, or redirect these workers from the server’s side, if de-
sired. This can be implemented as a watcher applet which is only available to server
administrators.

• Better fault-tolerance. Our current implementation of spot-checking is good for
proof-of-concept demonstrations and experiments, but needs to be improved for
practical use. In particular, the server currently uses the same spotter work object
repeatedly in one batch. Thus, a smart saboteur can identify the spotter work by
keeping track of the work objects it has received and watching for duplicates. A bet-
ter implementation could be to use several spotter works instead of just one, or, even
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more securely, we can decide to spot-check results on-the-fly as they are received
(with probability q) instead of pre-selecting the spotter works beforehand. We could
also implement spot-checking by voting as described in Sect. 6.4.3.

Alternatively, instead of selecting whole spotter works from the work pool, the server
can randomly select a small subpart of each work object in the pool and check that
part when it receives the corresponding result from a worker. In this case, the server
spot-checks workers all the time (i.e., q = 1), but each spot-check has only a prob-
ability h < 1 of detecting an error. Thus, this scheme should be similar to the old
scheme with q replaced by h, but has the advantage of not having a single spot-
ter work that smart saboteurs can distinguish from the rest. Note however, that as
is, this new scheme is mainly applicable in applications such as image rendering,
where the work objects themselves are partitionable into smaller independent parts.
In other applications, we may be able to use the techniques presented in [99] to allow
us to check subparts of a sequential computation.

• Better scalability. Like our spot-checking scheme, our volunteer server implementa-
tion is currently just a proof-of-concept implementation for demonstration purposes.
In order for volunteer servers to be used in real applications, we still need to imple-
ment some mechanisms such as a way to direct volunteers to the nearest volunteer
server, as well as a way to load balance between volunteer servers. It may also be
useful to look into other systems that also support the use of volunteer servers, such
as Javelin 2 [104, 106], which uses a combination of eager scheduling and Cilk-style
work stealing, and distributed.net, which allows volunteers who administer their
own LANs or intranets to install a “personal proxy” [42] – i.e., a local server acting
as a sort of cache between distributed.net and their internal machines (much like
Bayanihan’s volunteer servers do).



Chapter 4

Master-Worker Style Applications

4.1 Introduction

The ideal application for volunteer computing systems is one that is coarse-grain and em-
barassingly parallel (i.e., easily partitionable into completely independent parts). Coarse-
grain applications are ideal because most volunteer computing systems employ commod-
ity Internet network links which have limited bandwidth and high latencies. Thus, the
higher the computation-to-communication ratio (i.e., the granularity), the better the per-
formance. Embarassingly parallel applications are ideal not only because they tend to be
coarse grain as well (or can easily be made coarse grain by partitioning the work into large
blocks), but also because the independence of their subparts makes adaptive parallelism
and fault-tolerance easier to achieve than in other applications. In particular, since work
objects are independent of each other, the master can easily reassign work left undone
by workers who have left or crashed, or undo work done by bad workers. Also, since a
worker’s code does not need to be aware of information such as how many other work-
ers there are, when other workers join or leave the system, or which workers are faulty,
it is easier to migrate a worker process from one physical processor to another for load
balancing, or to run the same worker process on multiple processors for fault-tolerance.

A programming model that is especially appropriate for coarse-grain and embarass-
ingly parallel applications is the master-worker model, depicted in Fig. 4-1. In this model, a
computation is divided into a sequence of batches, as shown. Within each batch, the master
node divides the work to be done into many mutually independent work objects, and dis-
tributes these to available worker nodes. The worker nodes then execute the work objects
in parallel, and return their results to the master. When the master has collected the results
for all the work objects in the batch, it processes these results, and generates the next batch
of work objects (possibly using data from the results of the current batch). Then the whole
process is repeated for the new batch.

Because of its simplicity and appropriateness to volunteer computing, many wide-area
metacomputing systems today, as well as most, if not all, autonomous volunteer computing
systems (i.e., ones wherein volunteers have complete freedom to join or leave the compu-
tation at any time) assume, or at least highly encourage, using a master-worker model of
computation. These include Condor [48] (one of the first metacomputing systems employ-
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Figure 4-1: The master-worker model of computation.

ing idle workstations), as well as the most successful true volunteer networks today such
as distributed.net [40], GIMPS [158], and SETI@home [137].

While some of these systems, such as Condor, provide a general-purpose programming
interface, many of these, especially the most popular true volunteer computing systems,
are ad hoc systems that are written for specific problems and do not provide an easy way for
programmers to use their system for other problems. Moreover, the problems that these
systems have been tackling so far have mostly been limited to esoteric problems that do not
have direct practical use in real life. For example, although the authors of distributed.net
have successfully applied their technology beyond cracking RC5, their other projects are
similarly obscure mathematical problems such as finding Optimal Golomb Rulers [43].
Thus, someone hearing the term “volunteer computing” today would probably associate
it with projects that crack codes, compute π, or search for prime numbers, and would not
think that it can be used for practical applications.

In this chapter, we show that this is not the case. Using Bayanihan’s runtime system
and APIs for master-worker applications (described in Sect. 3.4.1), we show that there are
a wide variety of useful applications that can be implemented under the master-worker
model, including brute-force search, image rendering, genetic algorithms, communication-
ally parallel applications, parametric analysis, and Monte Carlo simulation. Since most, if
not all, volunteer computing systems today already have mechanisms for running master-
worker style applications (even though they may just use these mechanisms for only one
specific application), then these applications represent what these systems can do if their
developers provide a general-purpose API for them like Bayanihan’s. Thus, in presenting
these applications, we not only demonstrate the applicability of Bayanihan itself, but that
of volunteer computing systems in general as well.

In each of the following sections, we present a class of master-worker applications, and
a few example applications in that class. Although the example applications may not be
practical by themselves in some cases, they are meant to represent other, more practical,
applications in the same class that can be implemented with the same coding patterns (or
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in some cases, using an application framework we have already developed for that class of
applications). Similarly, although we present performance results to show that we actually
achieve useful speedups in these applications, the focus is not on the performance but on
the breadth of applicability. In many cases, performance can probably be improved if these
applications are implemented on other systems, especially native-code based ones. The
more important point is the fact that these other systems can be used for these applications
as well.

4.2 Brute-Force Search

One of the simplest classes of master-worker applications are brute-force search problems.
These are applications where there is a large search space of possible solutions, and we
simply examine all the possible solutions in parallel until we find a solution.

The RC5-64 cracking application run by distributed.net is an example [44]. There, they
divide the range of 264 possible keys into subranges and give a different subrange to each
worker. Each worker tries to decrypt the target message with each key within the sub-
ranges it is given until it finds a key that works (RSA has given the first few characters
of the decrypted message, so that people can tell if a decryption is successful or not).
The OGR-25 project, also by distributed.net, is another brute-force search application [43].
Many other applications fall under this category.

Applications in this category, have several advantages. For one, they are simple to
implement because for most applications, the master does not need to do anything except
partition the search space and wait for a worker to find the desired result. This makes
it possible to implement them even in systems that do not support performing arbitrary
computations between batches on the master node. Many of these applications are also
efficient because they require very little data transferred from master to worker and back
for a large amount of computation. For example, in the RC5-64 application, the master
need only transmit the beginning and end of the range, and receive a single boolean result
(i.e., “key found” or “key not found”).

Another advantage of these applications is that positive results are easily verifiable.
In the RC5 application, for example, if a worker claims to have found the right key, the
master can easily check this claim by using the key to decrypt the message. (The RC5
challenge organizers give out the first few characters in the message to allow crackers to
verify that they have the right key.) This makes it possible to implement a simple form of
fault-tolerance based on eager scheduling, as described in more detail in Sect. 6.2.1.

In the rest of this section, we present two examples: brute-force factoring and RC5.
Since this class of applications is already well-represented in existing volunteer comput-
ing systems, our goal in presenting these applications here is not so much to show new
applications, but to present performance results that demonstrate the effectivity of Bayani-
han and Java for these applications.

4.2.1 Example: Brute-Force Factoring

As a toy example, we have used the Bayanihan framework to write a simple application
that factors a Java long integer N by dividing the search space {1, ...,

√
N} into fixed-
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Figure 4-2: Brute-force factoring: Speedup plot.

Table 4.1: Brute-force factoring: Speedup with 8 workers.
measurement num / ms

sequential computation (1 worker) 1828
ave. speed (8 workers) 13571

speedup 7.42
efficiency 92.8%

sized work packets which are executed by the work engines. This example, inspired by
[154] (one of the first applet-based volunteer computing applications), although somewhat
unrealistic, was chosen because its simplicity and predictability make it easy to measure
performance and analyze results.

Figure 4-2 shows some results for N =1234567890123456789, with 112 work packets of
size 100000000 each. We used five identical 200 MHz dual-Pentium machines (one server,
and four clients) connected to a 10Base-T Ethernet hub, and running Windows NT 4.0. The
server application was run using Sun’s JDK 1.1.4, and the worker applets were run using
Netscape 4.02. The speeds in the figure represent the average rate (i.e., numbers checked
per millisecond) at which work packets were processed, over the course of searching the
whole target space. The number of workers represents the number of worker applets run
on the client machines. Each client machine was used to run up to two worker applets to
make use of the two processors in each machine. The ideal speed is computed as the pure
computation speed (measured at the client side) multiplied by the number of workers.
With eight workers, we get the figures in Table 4.1.

Table 4.2: Brute-force factoring: comparing C and Java speeds.
version num / ms

C 1879
Java 1828
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To evaluate the performance of Java, relative to C, we wrote a simple C program, com-
piled it with djgpp [37] (a gcc implementation for MS-DOS). Comparing its performance
with the one-worker pure computation performance, we get the results shown in Table 4.2.
These results show that at least for simple tight-loop computations such as our factoring
algorithm, the performance of the Java just-in-time-compiler in Netscape is comparable to
native C code.

4.2.2 Example: RC5 Decryption1

As a more realistic example, we implemented our own version of an application for solv-
ing the RSA RC5-64 on Bayanihan. The efficiency of this applications was similar to that
of factoring, achieving over 95% efficiency with 10 processors. The performance relative
to native code, however, was not as good as in the case of brute-force factoring, being 8
times slower than distributed.net’s version. This is still notable, though, considering that
distributed.net’s code was hand-optimized using processor-specific assembly code, while
Java does not even directly support some necessary operations such as bitwise rotates.

4.3 Image Rendering and Processing

Another useful class of master-worker applications are image rendering and processing
applications, wherein the final value or color of a pixel is determined through a long inde-
pendent computation. Examples of these include ray-tracing of scenes for 3D animation.
It also includes image processing applications, as described in [157]. These applications
have great potential for actual commercial use, particularly in the multimedia industry.
They can also be useful for scientific use, in particular to aid in the visualization of models
and data, as well as in the processing of image data.

Another useful property of applications in this class that make them particularly ap-
propriate for volunteer computing is that they are naturally fault-tolerant (see Sect. 6.2.1).
That is, even if a relatively large percentage (e.g., a few percent) of the pixels end up with
erroneous values, these would be unnoticeable to the user if they are scattered throughout
the frame and averaged out. Furthermore, if they become noticeable, then the user can
identify the noticeable errors and ask to have them be redone.

4.3.1 Example: Interactive Mandelbrot Set Renderer

As an example, we implemented an application for rendering images of the Mandelbrot
set [38]. Like raytracing, this involves performing a long computation independently for
each pixel. A unique feature not found in other volunteer computing systems that also
demonstrate raytracing and Mandelbrot set rendering, such as [23, 12, 113], is an interactive
user-interface that allows users not only to view results as they are received from other
workers, but also to control the computation in real time through a watcher applet. Figure 4-
3, for example, shows how computed blocks are displayed in the watcher applet as they
are received, without waiting for the whole picture to be done. Borders around the blocks,

1This is joint work with Lydia Sandon [130].
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Figure 4-3: A screenshot of the Mandelbrot application in action.

with colors corresponding to different workers, give users a sense for the parallelism in
the computation. Furthermore, using the request mechanisms described in Sect. 3.4.1, the
GUI also allows users to zoom in and out of selected areas or recompute the problem with
different parameters, even if the current picture is not yet completely plotted. In other
applications, this feature can be used to provide live interactive control for visualization
applications. For example, it could allow scientists to manipulate 3D images of molecular
models or MRI data in real-time.

Performance Results. Figure 4-4 shows performance results from running the Mandel-
brot application on 17 200 MHz Pentium Pro worker machines (1 server and 16 workers)2

connected by 10Mbit Ethernet, running Windows NT 4.0, Netscape 4.03 on the clients, and
Sun’s JDK 1.1.6 JIT compiler on the server. In this experiment, the target work was an
800x800 pixel array, divided into 256 square chunks. To represent different computation
granularities, we tried four different target ranges with different average depths (iterations
per pixel). For comparison, ideal speedup was computed using the sequential computa-
tion speed on a single unpartitioned 800x800 array with maximum depth. As shown, we
get good speedup for large granularities – achieving 91% and 85% efficiency with 16 work-
ers at depths 2048 and 1037, respectively. As the granularity decreases, however, commu-

2These are different and faster per processor than the 200 Mhz dual-Pentium (not Pro) machines used in
Sect. 4.2.1 so the absolute speeds here are not comparable.
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Figure 4-4: Mandelbrot application: Speedup plot.

Table 4.3: Mandelbrot application: comparing C and Java.

speed (106 iters/s) relative speed
Netscape 4 JIT on NT4.0 6.94 1.00
gcc 1.40 0.20
gcc -Obest 8.86 1.28

nication and other overheads begin to dominate, limiting efficiency to only 42% and 1%
with 16 workers at depths 198 and 3, respectively. Possible approaches to this problem
(which is not unique to Java-based volunteer computing) include reducing overhead, and
adaptively changing the problem granularity.

Table 4.3 shows a comparison of absolute speeds from sequential Java and native C exe-
cutions of the same Mandelbrot code. Again, as in Sect. 4.2.1, we see that with just-in-time
(JIT) compilation, Java was actually faster than unoptimized C code, while only slightly
slower than optimized C code (compiled with djgpp ’s gcc [37] using the -O option that
produced the best result).

4.4 Genetic Algorithms3

Genetic algorithms [72, 98] are algorithms that solve search and optimization problems
through the biological principle of natural selection. These algorithms function by main-
taining a population of chromosomes and performing operations on that population, sim-
ulating the biological evolutionary process. Each chromosome encodes a possible solution
to the problem being solved. By manipulating the chromosomes much like strands of DNA
– through combination, crossover, and mutation – the genetic algorithm produces new
chromosomes from the old ones. By selecting the chromosomes with the best solutions

3This section is joint work with Eamon Walsh [155].
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Initialize a (random) population.
test for termination criteria (time, fitness, etc.)
while not done do

give each chromosome an evaluation (fitness)
select parent chromosomes for reproduction
produce children through genetic recombination
perform other genetic operations (mutate, etc.)
evaluate the children
select survivors to advance to the next generation

end loop

Figure 4-5: Pseudo-code for a basic genetic algorithm.

from successive generations, the genetic algorithm eventually reaches a final, optimized
result.

Genetic algorithms have many real-world applications. Their high degree of adaptibil-
ity and versatility makes them ideal for problems with sudden, unexpected, or complex
conditions. They have many possible applications such as constructing schedules and
timetables, managing network routing, finding maxima and minima of complex functions,
playing complex games, and modeling complex systems in general including biological,
ecological, economic, and social systems [79, 98]. And, because they perform several oper-
ations on thousands of independent chromosomes in a cycle, they can easily benefit from
parallelization (see [157] for some examples).

In addition, genetic algorithm applications are also of particular interest to our research
because their self-correcting nature can give them a certain degree of immunity from sabo-
tage. That is, since any non-desirable solutions returned by faulty processors or saboteurs
will be screened-out through natural selection, then at worst, saboteurs can only make
the algorithm take longer by introducing undesirable solutions into the system. At best,
they may even inadvertently introduce benevolent mutations that will lead to the desired
solutions more quickly.

Using Bayanihan, we have developed an application framework for parallelizing ge-
netic algorithms. We describe it here, and describe the results of using it for a toy example
involving finding the maximum point of complicated 2D functions.

4.4.1 Framework Design

Figure 4.4.1 shows pseudo-code describing the work cycle of a basic genetic algorithm [79].
To implement a genetic algorithm, using the framework, a programmer needs to provide
the following information by extending existing classes in the framework:

• Format for encoding information in the chromosomes

• Population size

• Number of generations before stopping

• Evaluation function for scoring the chromosomes
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1 worker 4 workers Speedup
Function 1 2253 662 3.40
Function 2 2257 683 3.30
Function 3 2270 711 3.19

Table 4.4: Genetic Algorithm application: Running times (in ms) and speedups.

• Reproduction operators (mutation, crossover, etc.)

• Survival function for performing natural selection

Once this information is defined, the framework executes the genetic algorithm in par-
allel. As the algorithm executes, the workers execute the code within the loop while the
master takes care of partitioning the chromosome population into work objects, collecting
the new chromosomes as results, and repartitioning them again for the next cycle.

4.4.2 Example: Function Optimization

We used this framework to write a sample genetic algorithm and run it on the Athena
student network at MIT. The genetic algorithm finds the absolute maximum value of a
function f(x, y) by maintaining a population of chromosomes which contain encoded x
and y values. The genetic material is a string of 44 bits, which is divided into two 22-
bit numbers. The numbers are scaled from the range [0, 222 − 1] to the range [−100, 100]
and used as inputs to the function. The score of a chromosome is equal to its function
value. Thus, since the highest-scoring chromosomes come to dominate the population, the
population eventually evolves to the point where a maximum is found.

Two trial runs were performed. In the first trial, the algorithm was run with a single
worker client on one machine. In the second trial, four worker clients on separate machines
were used. In each trial, the algorithm was given three functions to maximize. After five
generations, the highest-scoring chromosome in the population was returned and its score
recorded. The algorithm succeeded in finding the maximum value of the three different
functions with an error of less than 0.2% in all cases. In the first trial, one generation was
finished approximately every 2260 ms. In the second trial, one generation was finished
approximately every 685 ms. Although network overhead caused a loss in performance
during the second trial, the four machines working in parallel were still over three times
faster than the single machine.

4.5 Communicationally Parallel Applications

If restricted network access (as in the case of applets) is not a concern, then volunteer com-
puting can also be used not only for multiplying computational power, but communication
power as well. This opens up the possibility for many interesting new applications.
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Figure 4-6: The distributed web-crawler experiment.

4.5.1 Example: Distributed Web Crawling

Consider, for example, a web crawler – i.e., an application that recursively follows links
in web pages, compiling a list of pages as it goes along. Such an application is extremely
communications-bound. That is, most of its time is spent downloading web pages from the
network. Thus, it can take a long time, even on a fast processor, if network bandwidth is
limited. This leads to an interesting idea: what if we can use volunteer computing to get
other machines, with their own (possibly faster) network connections, to do the crawling
for us?

To test this idea, we implemented a distributed web-crawling application using Bayani-
han, and used it in the setup shown in Fig. 4-6. We simulated a fast computer with a slow
network link by placing the user on a 166 MHz Pentium PC connected to the network
through a 28.8 Kbps modem.4 We ran a Bayanihan server on this machine, and a watcher
client so the user can see the results. Then, we measured the time it took to find 4000 URLs
starting from http://www.yahoo.com/ , first running the worker applet on the same
PC (using Sun’s appletviewer with network restrictions turned off), and then running
it on “volunteer” UNIX workstations with slower Java interpreters (i.e., the factoring demo
runs about 4 times slower on these machines thank on the notebook) but faster network
links (i.e., 10 Mbps Ethernet).

Table 4.5 shows the results of the experiment using two versions of the application.
The first version was based on the same “basic” work engine and work manager objects
used in the factoring demo. Although this version produced the desired speedups, we
noticed that its full potential was supressed by a communications bottleneck—although
the workers were able to download web pages very quickly through their Ethernet links,
they were slowed down considerably by the need to report results back to the server (on
the other side of the modem link) for each work packet before working on the next packet.
To remove this bottleneck, we extended the basic work engine and the work manager ob-
jects, and created MultiWork versions as described in Sect. 3.5.1 that allow the worker to
prefetch several packets of work at the same time so that it can do new work while simul-
taneously reporting the results of previously done work. As Table 4.5 shows, this resulted

4This experiment was done in 1997, when a 166 Mhz Pentium was not so slow, and UNIX versions of the
Java virtual machine did not use just-in-time compilation.
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Table 4.5: Distributed web-crawler: Timing measurements
UNIX-Ethernet

Basic MultiWork
measurement PC-mdm 1 2 3 1 2 3
time for 4000 URLs (s) 817 391 268 213 222 148 166
speed (URL/s) 4.89 10.2 14.9 18.8 18.0 27.0 24.1
speedup (rel. to PC-mdm) 1 2.09 3.05 3.84 3.68 5.52 4.93
speedup (rel. to 1-UNIX) 1 1.46 1.84 1 1.50 1.34
speedup (rel. to Basic) 1.76 1.81 1.28

in up to 80% more speedup over the basic version. Furthermore, the new MultiWork ver-
sions of the work engine and work manager can be used transparently in place of the basic
version, allowing us to improve the performance of other applications as well without the
need for recoding.

4.5.2 Other Possible Applications

Another communicationally parallel application that can be implemented through vol-
unteer computing is distributed web benchmarking. In web benchmarking, the goal is to
measure the average delays involved in accessing a particular web site by trying to access
it from various points on the Internet and gather timing information. Some companies
such as Keynote Systems [83] provide such a benchmarking service. Volunteer computing
may be able to improve on such services by providing more widespread coverage (since
volunteers can come from all over the Internet). We have not implemented distributed
web benchmarking on Bayanihan, but SolidSpeed Probester [142] is starting to do so using
Entropia’s volunteer network [45].

4.6 Parametric Analysis and Monte Carlo Simulations

One of the most promising classes of applications for volunteer computing today is para-
metric analysis. Parametric analysis applications are ones wherein we run a large number of
independent computationally intensive sequential computations, each with a slightly dif-
ferent set of input parameters. This allows us to study the effects of the different parame-
ters on the output value of the computation, allowing us to find combinations of parameter
values that would lead to optimum output values, or to derive general relationships that
let us analytically predict the outcome given arbitrary input parameters.

Parametric analysis applications probably have the greatest potential for benefitting
from volunteer computing among all applications today. This is so not only because these
applications are typically coarse-grain and easily parallelizable and thus would run effi-
ciently on volunteer computing systems, but even more so because they form a natural
extension of the simulators that most programmers write today. Since most programmers
today do not have access to parallel machines, many simulators today are still written as
sequential programs. Programmers use these by feeding them different parameter combi-
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nations and taking note of the results for each combination. Parallel parametric analysis
offers these programmers a straightforward way to save time by enabling them to run their
programs on many machines with many different parameter combinations at the same
time. Since no change in the sequential code is needed, a programmer can start benefit-
ting from volunteer computing right away without having to learn how to parallelize their
code. In this way, volunteer computing can be used for a wide variety of useful real-life
applications.

A particularly promising class of such applications are Monte Carlo simulations. These
simulations compute certain properties of a hard-to-analyze system by simulating its be-
havior given many different random sequences of events, and analyzing the results. Monte
Carlo simulations were used in the Manhattan Project for developing nuclear theory [94],
and enjoy many applications today, from physics and medicine (e.g., clinical radiation
dosimetry [16]) to finance (e.g., valuation of financial derivatives [116]), and many other
applications (see [66] for a good list of current projects). Note that Monte Carlo simula-
tions are simply parametric analysis computations where the parameter that is varied is
the random number generator seed that generates the random events within the sequen-
tial simulator. Thus, they can be run on any system that supports parametric analysis, and
are particularly appropriate for volunteer computing systems.

4.6.1 Writing Parametric Analysis Applications

Bayanihan provides a simple framework for writing parametric analysis applications. To
write an application, one needs to define four main types of objects: the work, result, con-
figuration, and program objects. The work object contains the sequential code for doing
one run of the computation with a specific set of parameters. It takes a configuration object
representing the parameters, and returns a result object representing the output of the com-
putation for that particular configuration. The program object is responsible for creating a
list of parameter configurations that the programmer wants to try, and then adding work
objects with each of these configurations to the work pool so that they can be processed
in parallel by the volunteer workers. The program is also responsible for processing the
results after they have been collected.

In this way, we can parallelize the computation by letting different parameter configu-
rations be run on a different machines at the same time . In a sense, the other applications
described in this chapter can also be considered simple forms of parametric analysis. For
example, in brute-force factoring and RC5, the parameters that are varied are the range
boundaries of the subspaces to be searched. The Mandelbrot set application can also be
seen as an interactive parametric analysis computation where the parameters consist of
the block boundaries. In general, however, parametric analysis applications are not limited
to these, but can include simulators such as the fault-tolerance simulator to be presented
shortly.

4.6.2 Writing Monte Carlo Applications

On top of this basic framework for parametric analysis, we also provide an API for writing
Monte Carlo simulations. This API provides the following features:
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• Random number generator classes. These classes, adapted from the Colt project
[73], provide random number generators that have better statistical properties and
are more well-suited to Monte Carlo simulations than the built-in Java Randomclass.
One of the classes taken from Colt is a random seed generator, that can be used to
generate sequences of non-correlated random seeds to be given as initial parameters
to each work object. This is crucial in parallel Monte Carlo simulators since these sim-
ulators require not only that the random number generators within each work object
have good pseudo-random properties, but also that the random numbers generated
in each work object are independent from those in other objects.

• Statistics summary class. This class, DStat , has an addSample() method that
takes samples in the form of a double or another DStat object, and efficiently com-
putes running values of statistics such as the mean, standard deviation, and maxi-
mum and minimum values as each sample is added. This makes the task of collecting
results from each work object simple. The standard deviation statistic that this com-
putes can also be used as an indicator of the precision of the results so far, and can
be used to determine whether the results are good enough or whether more samples
need to be taken.

• Parallel methods. By extending the ActiveMCProg object, Monte Carlo programs
can make use of methods that automatically create the work objects and collect statis-
tics given the desired work object and initial parameters. This makes the Monte
Carlo program code very simple and readable. In particular, the API provides a do-
Batch() method, which takes a work class object and a configuration object, and
allows us to run many different instances of the work class in parallel using the same
parameter configuration but with different random number seeds, and collect the re-
sults through a collector object that extracts information from result objects generated
by work classes and places them in corresponding DStat objects.

4.6.3 Example: Computing π

Section A.2.4 in App. A presents the code for the classic Monte Carlo toy example used
in parallel computing literature [63, 157] – computing the value of π. In this application,
we compute the value of π by randomly generating points within a 2 × 2 square, and
counting how many of those fall within the unit circle (i.e., with radius 1) inscribed within
the square. Since the area of the unit circle is πr2 = π while the area of the square is 4, then
the fraction of points that fall with in the square gives us π/4, which, multiplied by 4, gives
us π.

Although this is not a practical algorithm for computing π (the amount of work re-
quired to get the next decimal digit of precision grows exponentially), it is presented
here as an example of how Monte Carlo applications work and how they can be coded
in Bayanihan.
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4.6.4 Example: Fault-Tolerance Simulator

Overview

A more practical example is ftsim , the fault-tolerance simulator that we use in Chap. 6.
This application, described in more detail in Sect. 6.5.1, is both a parametric and Monte
Carlo simulator. As a Monte Carlo simulator, it computes the average expected error rate of
a volunteer computing system for specific values of parameters such as the faulty fraction
(f ), sabotage rate (s), and credibility threshold (ϑ), by running multiple instances of the
simulator with the same parameters but different random number seeds. At the same time,
it allows us to do parametric studies by varying the different parameters and observing the
effect on the error rate.

In the plots in Sect. 6.5.2, for example, each point represents the result of 100 Monte
Carlo simulations run in parallel using the same combination of parameters, and gives us
the expected performance (i.e., error rate and slowdown) of the system for a particular
combination of f , s, and ϑ, averaged over these simulations. At the same time, the plots
themselves represent the result of running many such sets of Monte parallel Carlo simu-
lations, and allow us to see how the error rate and slowdown vary with these different
parameters. In this way, the fault-tolerance simulator has enabled us to verify our theories
and make valuable new discoveries.

In Sect. A.3.1, we show sample code for a fault-tolerance experiment. Here, each call to
doBatch() (within doSScan() ) runs a parallel Monte Carlo simulation using a particu-
lar work class and configuration. After the call to doBatch() the collector object contains
statistics such as the error rate and slowdown, which we use to plot one point in the plots
in Sect. 6.5.2. To get the whole plot, we run many such parallel Monte Carlo simulations
with various parameter combinations, and record the statistics in a file.

Performance

Since each point in these plots requires 100 simulations of 10 batches of 10,000 work objects
each, these simulations can take hours to plot a single point running on a single machine.
Thus, parallelizing the application was really necessary in this case.

In generating the results in Sect. 6.5.2, we used a variety of machines within the MIT
campus network running on different operating systems. These included Windows PCs (a
166 MHz Pentium Pro, 180 MHz and 200 MHz dual-Pentium machines, 350 MHz Pentium
machines, and others), Linux PCs (800 MHz Pentium III machines), and Sun workstations
(Sun Sparcstation 5 and Ultra 5 workstations). Because the machines had different speeds,
speedup in this case was not clearly defined. Figure 4-7 shows the speedup of the sys-
tem relative to the fastest machine. To measure this speedup, we measured the speed of
each individual machine by having it report, for each work object it does, the amount of
local computation time required (not counting communication time) and the number of
operations done during that time. (In this case, the latter was measured as the number of
simulated calls to getWork() in the simulator.) At the end of the batch, the server then
goes through all the results submitted by the worker and computes the total number of op-
erations and the total time. Dividing these gives us the average speed of each machine for
that batch. Finding the fastest machine and comparing its speed to the actual throughput
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Figure 4-7: Fault-tolerance simulator: Speedup relative to the fastest machine.

at the server (measured as the total number of operations for the batch over “wall clock”
time at the server), we get the speedups indicated by diamonds in Fig. 4-7.

As shown, we get more speed as we add more processors. Apart from that, however,
it is difficult to draw any conclusions about the performance of the system. Since some
of the machines are slower, we cannot expect to get P speedup for P processors (as we
normally do in homogeneous systems) – even under ideal conditions. Thus, to get a better
idea of how much speedup we can expect, we took the total of the individual speeds of the
machines at the end of the batch. As shown by the triangles in Fig. 4-7, this was less than
the number of processors, as we expected, but more than the actual net speed measured
at the server. Given this total speed, we can get a better measure of the performance of
the system by calculating its efficiency as the actual speed over the total speed. Figure 4-
8 shows a scatterplot of the efficiencies we observed across different batches and runs of
the simulator with a varying combination of machines, while Fig. 4-9 shows an equivalent
plot with the normalized speedup, computed by multiplying the efficiency by the number of
processors.

As shown, we get reasonably good efficiency, even at 50 processors. Interestingly, the
losses in efficiency in this case are not due to communication and server-side overhead,
as we might at first suspect. The simulations shown here were fairly coarse-grain com-
putations – i.e., the average time taken by the fastest computer for each work object (i.e.,
sequential Monte Carlo run) was between 2 and 200 seconds with a median of around
20 seconds (the times varied because some parameter combinations resulted in longer or
shorter simulations). We suspect that most of the inefficiencies are instead due to a lim-
itation of eager scheduling that applies when the work batches are not big enough. In
this case, we had only 100 work objects distributed among up to 50 workers. This caused
fast workers to quickly run out of unassigned work to do, and start doing work already
assigned to slower workers – possibly finishing the work before they do. While this is a
good feature that makes sure that slow processors do not slow down the faster processors
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(i.e., in the worst case, all the work will be done in the time it would take the faster proces-
sors to do the job by themselves, as if the slower processors were not there), it does have
the drawback of wasting the processor power of the slower processors. Thus, since this
processing power is accounted for in the total speed, the fact that it was used for work
which was redone by a faster processor shows up as a loss in efficiency.5

In general, the way to get around this problem and get more efficiency is to have longer
batches. In this case, one solution might be to provide a doMultiBatch() method in the
Monte Carlo API that would take multiple pairs of configuration and collector objects,
and allow Monte Carlo simulations with more than one set of parameter values to run in
parallel in the same batch. Suppose for example, that we want to see the effects of changing
s from 0.1 to 0.2 to 0.3. Instead of having to run a sequence of three batches of 100 work
objects each as we do now, we may run a single batch with 300 work objects instead, and
thus improve efficiency.

In any case, however, even as it is, the fault-tolerance simulator has already proven
itself as a real example of volunteer computing’s great potential for use in real-life appli-
cations. Even with its slightly suboptimal efficiency, it has served as an invaluable enabling
tool, that demonstrates the ability of volunteer computing to empower people to conduct
previously impossible research.

4.7 Conclusion

In this chapter, we have shown how volunteer computing is not limited to esoteric math-
ematical problems but can easily be applied to a wide variety of useful applications if we
can provide even simple general-purpose APIs for writing master-worker applications like
Bayanihan does. Recently, other volunteer computing systems have also started providing
such general-purpose APIs and using them for a wide range of practical applications. One
of the most notable of these is Parabon [113], whose Java application-based Frontier pro-
gramming platform is currently being applied to several classes of applications including
most of those we have discussed in this chapter (i.e., brute-force search, rendering, para-
metric analysis, and Monte Carlo simulation), and others, such as DNA sequence analysis,
and exhaustive regression [115].

Other applications that we have not discussed in this chapter but also have potential
for benefitting from volunteer computing include branch-and-bound computations and data
mining applications.

Branch-and-bound computations are like brute-force search computations but are more
efficient in that they do not necessarily search the entire space but cut down the search
space as they go along by identifying subtrees of the search that cannot possibly produce
results better than those already found. These have applications in optimization problems,

5In our current implementation, if a slow worker is unable to finish even one work packet before the batch
ends, then its individual speed might not be included in the total speed for that batch. This may result in
efficiencies that seem higher than they actually are. Although this problem needs to be fixed in future versions,
we believe that it does not affect the results shown here that much. The fact that a worker was so slow that
it could not do one work object in the time it took the whole system to do 100 work objects means that its
contribution to the total speed would have been relatively small anyway (i.e., at most around 1%), and thus
would not have affected the efficiency computation by much.
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as well as in playing strategy games such as chess. Javelin++ demonstrates the implemen-
tation of branch-and-bound on a Java application-based volunteer computing system with
an example program that solves the traveling salesperson problem [105].

Data mining applications are those wherein we process a large amount of data in order
to find or deduce useful patterns in the data. SETI@home and Parabon’s DNA sequencing
applications are examples of data mining applications done using volunteer computing.
Other examples of data mining not yet implemented with volunteer computing include
finding patterns in customers’ buying records that may help guide marketing strategies
(e.g., customers who buy product A are likely to buy product B [110]), and many oth-
ers [122, 140]. These applications have the potential of bringing the benefits of volunteer
computing beyond scientific applications to commercial applications as well.

For future work, it would be useful not only to implement more examples of applica-
tions under the classes already described here, but to find other classes of applications that
can benefit from volunteer computing systems as well.



Chapter 5

BSP as a Programming Model for
Volunteer Computing

5.1 Introduction

While the master-worker model covers a large number of real-world applications, these
represent only a fraction of the variety of parallel applications that users may want to run
on volunteer computing systems. In particular, most parallel applications today, such as
those written with PVM and MPI, assume a message-passing model. Unfortunately, how-
ever, the need for adaptive parallelism and crash-tolerance makes implementing these
applications on volunteer computing systems difficult. The MPI model for example, as-
sumes that the number of physical processors is known and fixed. MPI provides little or
no support for situations where nodes leave or join the system at unexpected times. PVM
provides ways to detect nodes that leave or crash, but requires programmers to deal with
these explicitly and implement their own way of reassigning work to other workers.

In this chapter, we present Bayanihan BSP, a new programming interface based on the
bulk synchronous parallel (BSP) model [150, 139], that makes it possible to write message-
passing style parallel programs while at the same time allowing us to take advantage of
the adaptive parallelism and fault-tolerance mechanisms we have developed for master-
worker style systems.

5.2 The BSP Programming Model

In BSP, a parallel program runs across a set of virtual processors – called processes to
distinguish them from physical processors) – and executes as a sequence of parallel super-
steps separated by barrier synchronizations. Each superstep is composed of three ordered
phases, as shown in Fig. 5-1: (1) a local computation phase, where each process can perform
computation using local data values and issue communication requests such as remote
memory reads and writes; (2) a global communication phase, where data is exchanged be-
tween processes according to the requests made during the local computation phase; and
(3) a barrier synchronization, which waits for all data transfers to complete and makes the
transferred data available to the processes for use in the next superstep.

87
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Virtual Processors (Processes)
P4P0

global communication

local computation

P1 P2 P3

barrier synchronization

Figure 5-1: A BSP superstep.

1 void shift2()
2 { right = ( bsp_pid()+1 ) % bsp_nprocs();
3 s = 0; d = bsp_pid();
4 bsp_register( "d",&d ); //register variable "d"

// begin superstep 0
5 bsp_put( right,"d",d ); // put my pid to right’s d *at next sync*
6 s = d; // s <- current d (i.e., mypid )
7 bsp_sync(); // synchronize

// begin superstep 1; d is now left’s pid
8 bsp_send( right, d ); // send d to right * at next sync *
9 s += bsp_recv(); // error! nothing to receive yet!
10 bsp_sync(); // synchronize

// begin superstep 2; msg is now in recvq.
11 d = bsp_recv(); // receive d sent in line 7
12 s += d; // s <- s + 2nd-left’s pid
13 }

Figure 5-2: BSP pseudo-code for a two-step cyclic shift.

Figure 5-2 shows pseudo-code for a simple program where each process passes data
to its right neighbor and performs a little local computation. As shown, BSP is very sim-
ilar to conventional SPMD/MPMD (single/multiple program, multiple data)-based program-
ming models such as MPI, and is at least as flexible, having both remote memory (e.g.,
bsp put() ) and message- passing (e.g., bsp send() and bsp recv() ) capabilities. The
timing of communication operations, however, is different – since the global communi-
cation phase does not happen until all processes finish the local computation phase, the
effects of BSP communication operations are not felt until the next superstep. In line 6
of Fig. 5-2, for example, s gets the unchanged local value of d, even though a bsp put()
operation is called in line 5. Similarly, in line 9, the call to bsp recv() returns null or
generates an exception.

This postponing of communications to the end of a superstep is the key idea in BSP. It
removes the need to support non-barrier synchronizations between processes, and guar-
antee that processes within a superstep are mutually independent. This makes BSP easier
to implement on different architectures than traditional models, and makes BSP programs
easier to write and to analyze mathematically. For example, since the timing of BSP com-
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Figure 5-3: Implementing BSP on top of the Bayanihan master-worker framework.

munications make circular data dependencies between BSP processes impossible, there is
no risk of deadlock or livelock in a BSP program. Also, the separation of the computation,
communication, and synchronization phases allows one to compute time bounds and pre-
dict performance using relatively simple mathematical equations [139].

Because of these advantages, a growing number of people are now applying BSP to a
wide variety of realistic parallel applications, ranging from small general-purpose numeric
libraries (e.g., for matrix operations), to large computational research applications used
in both academia and industry (e.g., computational fluid dynamics, plasma simulation,
etc.) [20]. By implementing BSP in Java, we hope to enable programmers to port these
applications to Java, and make it easier to do realistic research using volunteer computing
systems.

5.3 Implementing the BSP Model

5.3.1 The Bayanihan Master-Worker Based Implementation

BSP’s structure makes BSP relatively easy to implement in volunteer computing systems.
Since processes are independent within supersteps, we can package the work to be done
in a superstep as separate work objects and farm them out to volunteer worker nodes
using a master-worker system. Figure 5-3 shows how we have implemented BSP using
the existing Bayanihan master-worker runtime system described in Sect. 3.4.2. As shown,
BSP processes are implemented as BSPWork objects and placed in a work pool on the
server.
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When the work engine receives a new work object, it calls the work object’s bsp run()
method, which starts the local computation phase of the superstep indicated by the re-
storestep field. As bsp run() executes, communication requests are logged in Ms-
gQueue fields, and the values of shared variables are saved in the bspVars field, a hash ta-
ble that stores objects under String -type names. Execution continues until bsp sync()
is called, at which point restorestep is incremented and control returns to the work
engine. The work engine then sends the whole work object – including bspVars , the Ms-
gQueues, and restorestep – back to the server, which in turn marks the original work
object “done”, and stores the returned work object as its result own result.

When all work objects are done, the work manager notifies the BSPProgram object,
and the global communication and barrier synchronization phases begin. The BSPPro-
gram object goes through the result work objects, and performs all the global communi-
cation operations by moving data from one work object to another. The remote memory
access operations (bsp get() and bsp put() ) are done by reading from and writing to
the work objects’ bspVars fields. Similarly, the message-passing style bsp send() oper-
ation is performed by enqueuing the message data into the destination node’s inQ field, so
that in the local computation phase of the next superstep, they can be retrieved by calling
bsp recv() . After all the communication operations have been performed, each work
object in the work pool is replaced by its updated version, and control returns to the work
manager. The next superstep begins as the work manager starts giving workers new work
objects wherein restorestep indicates the new superstep, bspVars contains updated
variable values, and inQ contains new incoming messages.

In addition to the work objects in the work pool, the server also has a special main work
object, which is like other work objects, except that it is not farmed out to workers, but is
run on the server itself. In place of bsp run() , the server calls the bsp main() method.
As described in Sect. 5.4.1, the main work object can be used for such tasks as spawning
new work objects, coordinating other work objects, collecting and displaying results, and
interacting with users.

5.3.2 Adaptive Parallelism and Fault-Tolerance

Since no communications occur while these work packets are running, we can rerun work
packets or run several copies of the same work object at a time, resolving any redundancies
safely at the end of the superstep. This makes it possible to implement adaptive parallelism
and fault-tolerance mechanisms as described in Sect. 3.5.2 and Chap. 6.

In addition, implementing the BSP processes as work objects makes checkpointing easy.
Previous research in C-based BSP systems has shown that the call to bsp sync() at the
end of the superstep provides a convenient place to checkpoint the program state and
migrate processes to achieve adaptive parallelism and crash-tolerance [108, 67]. In our
implementation, checkpointing happens automatically as each work object returns itself to
the server at the end of a superstep. Since the returned work object includes all necessary
process state in bspVars , the MsgQueue’s, and other non-transient fields, this state can
easily be saved and restored later or migrated to another machine.

Note that this is in strong contrast to traditional message-passing APIs such MPI, where
adaptive parallelism, fault-tolerance, and checkpointing are hard to implement. In such
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systems, it is difficult or impossible to rerun processes because messages that a process has
already sent out to other processes cannot be taken back. Redundant process also need
to be explicitly coordinated somehow. Finally, checkpointing is difficult because different
processes can be at different stages in the computation at the same time, since there are no
convenient synchronization points as in BSP.

5.4 Writing Bayanihan BSP programs

To write a Bayanihan BSP program, one simply extends the BSPWork base class and de-
fines an appropriate bsp run() method containing the BSP program code. No changes to
the Java language or Java virtual machine (JVM) are required.

5.4.1 The Bayanihan BSP Methods

The BSPWorkclass provides several methods which subclasses inherit and can call within
bsp run() in the same way one would call library functions in C. These are based on
BSPLib [20], a programming library for C and Fortran currently being used in most BSP
applications, but have been modified to account for language and style differences be-
tween Java and C. These methods are shown in Table 5.1, subdivided by function into the
following categories (in order): inquiry, message passing, direct remote memory access, and
synchronization.

Message-Passing

The message-passing methods are similar in functionality to those found in systems such
as MPI [63] or PVM [54], except that, as noted earlier, messages sent during a superstep
can only be received by the recipient in the next superstep. In the present implementation,
messages are queued at the recipient in arbitrary order, but can be identified by tag using
the bsp peekTag() method, or by calling the getBSPTag() method of the BSPMes-
sage object returned by bsp recv() . The data itself can be retrieved as an object by
calling the getData() method of the BSPMessage. Any data object that implements the
java.io.Serializable interface or has a HORB proxy (generated by the HORB com-
piler) can be passed in a message. Note that Java’s object-oriented features and platform-
independence make sending and receiving messages much easier than in C-based systems
such as MPI or PVM, where one must explicitly decompose complex messages into its
primitive components.

Direct Remote Memory Access

The direct remote memory access (DRMA) methods, bsp put() and bsp get() , allow
processes to write to and read from remote variables by specifying the owner’s process ID
and the String - type name of the desired variable.

The bsp save() method registers a variable into the bspVars table. This allows it to
be saved at a checkpoint, and to be read remotely using bsp get() . A variable remains
registered until it is removed with bsp unregister() , and its contents can be modified



92 CHAPTER 5. BSP AS A PROGRAMMING MODEL FOR VOLUNTEER COMPUTING

Table 5.1: Basic Bayanihan BSP methods
method meaning
int bsp pid() my BSP process identifier
int bsp nprocs() number of virtual processes
double bsp time() local time in seconds
void bsp send(BSPMessage msg) send prepared message
void bsp send(int dest,int tag, create tagged message,

Object data) and send to dest
BSPMessage bsp recv() receive message
int bsp qsize() number of incoming messages
BSPMessage bsp peek() preview next message
int bsp peekTag() preview next message tag
void bsp save(String name,Object data) save data under name
Object bsp restore(String name) restore data under name
Object bsp unregister(String name) remove data under name
void bsp put(int dest,String destName, write data to destName

Object data) variable of dest
Object bsp get(int src,String srcName, read srcName variable

String destName ) of src to local destName
boolean bsp sync() sync; possibly checkpoint and migrate
boolean bsp step() mark beginning of superstep
boolean bsp cont() mark continuation of superstep
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freely by its owner using accessor methods. If the object itself is replaced, however, then
bsp save() must be called again to update the reference stored in bspVars . A variable
can also be registered by processes other than its owner by using the bsp put() method.
This technique can be used by BSPMainWork objects to initialize worker variables.

The bsp restore() method restores the value of a variable so it can be used within
a superstep. Variables that are used in all or most supersteps can be restored in the init-
Vars() method, which is always called before bsp run() . This guarantees that the vari-
ables are always restored and available at the beginning of a superstep. If an attempt is
made to restore an unregistered name, bsp restore() returns null . Typically, variables
restored with bsp restore() are declared as transient fields since their values are
already stored in bspVars and do not need to be serialized independently.

Like the message-passing methods, the DRMA methods do not take effect until the next
superstep. Thus, for example, a bsp get() called during a superstep will only update the
destination variable in the next superstep. The value received by bsp get() is the value
of the source variable at the end of the local computation phase, before any puts or gets
are done. Similarly, the value sent by bsp put() is the value of the data object at the end
of the local computation phase. This may be different from the value of the data object at
the time bsp put() was called, unless the data is first cloned before bsp put() is called.

Synchronization and Checkpointing

Calls to bsp sync() not only indicate barrier synchronizations, but also mark potential
checkpoint locations where a virtual process may be paused, saved, and moved to a differ-
ent physical processor. While pausing and moving processes is easily done as described in
Sect. 5.3.1, resuming execution is harder. In C, resuming execution can be done relatively
easily by either using system-specific low-level mechanisms (as done in [67]), or using a
pre-compiler to annotate the source code with a jump table using switch and goto state-
ments such as done in Porch [123]. Unfortunately, these techniques are not applicable in
standard Java, where it is not possible to do a dynamic jump to a variable code location
(i.e., one that is determined only at runtime not at compile-time).1

Thus, instead of using direct jumps, we use if statements to skip over already-executed
code. Figures 5-4 and 5-5 show an example. In general, the code for a superstep should be
enclosed in an if (bsp step()) block and ended with a call to bsp sync() , as shown
in step 0. As a syntactic shortcut, an if (bsp sync()) statement can be used to end
a superstep and start the next one at the same time, as shown at the end of step 1. In
cases where function calls, for , while , if-else , or other special constructs prevent a
superstep’s code from being enclosed in one block, one can use an if (bsp cont())
statement to continue the superstep on the other side of the offending statement as shown.

1Although it may be possible to do Porch-like switch statements in Java, we expect that this would not
present a performance improvement since going through the switch would require a similar number of
steps as going through a chain of if s. What would be useful to have in Java would be a goto x instruction,
where x is a variable, not a constant. If we had this functionality, we could save the current program counter
in a variable, and then jump to it upon restoring. This would be similar to the system-specific low-level
mechanisms used by other C-based systems. However, we cannot do this in Java.
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void bsp_run() step 2+n, part b;
{ step 0; foo(); // func with sync

bsp_sync(); step 3+n, part b;
step 1; bsp_sync();
bsp_sync(); } // end bsp_run()
step 2, part a;
for ( int i=0; i<n; i++ ) void foo()
{ step 2+i, part b; { // cont. current step

bsp_sync(); step 2+n, part c;
step 2+i+1, part a; bsp_sync();

} step 3+n, part a;
// code continued in next column } // end foo();

Figure 5-4: BSP pseudo-code without code-skipping.

void bsp_run() if ( bsp_cont() )
throws BSPSyncException { step 2+n, part b

{ if ( bsp_step() ) }
{ step 0 foo(); // func with sync
} if ( bsp_cont() )
bsp_sync(); { step 3+n, part b
if ( bsp_step() ) // explicit }
{ step 1 bsp_sync();
} } // end bsp_run()
if ( bsp_sync() ) // shortcut
{ step 2, part a void foo() throws
} BSPSyncException
for ( int i=0; i<n; i++ ) { if ( bsp_cont() )
{ if ( bsp_cont() ) { // cont. current step

{ step 2+i, part b step 2+n, part c
} }
if ( bsp_sync() ) if ( bsp_sync() )
{ step 2+i+1, part a { step 3+n, part a
} }

} } // end foo()
// code continued in next column

Figure 5-5: Transformed BSP pseudo-code with code skipping.
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protected boolean bsp_sync() protected boolean bsp_step()
throws BSPSyncException { return (curstep>=restorestep );

{ if ( curstep++ >= restorestep ) }
{ restorestep = curstep;

throw new BSPSyncException();
} protected boolean bsp_cont()
return bsp_step(); { return bsp_step();

} }

Figure 5-6: Code for bsp sync() , bsp step() , bsp cont() .

Figure 5-6 shows how these three methods are implemented. When restarting a check-
pointed BSPWork object, bsp run() is called with curstep initialized to 0, and re-
storestep set to the step to be resumed. The bsp step() and bsp cont() functions,
called at the beginning of each code block, return false while curstep has not yet
reached restorestep , allowing blocks that have already been executed to be skipped.
At the end of each skipped superstep, the call to bsp sync() increments curstep so
that curstep eventually reaches restorestep , and the desired superstep’s block is al-
lowed to execute. The next call to bsp sync() then ends the superstep by updating re-
storestep and throwing an exception which causes bsp run() to return control to the
work engine.

As demonstrated in Fig. 5-5, these methods can be used even when bsp sync() calls
occur in loops, if-else blocks, and function bodies. Moreover, the code transformation
rules are simple enough to be applied manually without using pre-compilers. In many
cases, all a programmer needs to do is enclose the superstep code in braces, and add an if
in front of bsp sync() . As shown here, and more clearly in the realistic sample code in
Sect. 5.4.2, the resulting code is still reasonably readable. In fact, the indented blocks may
even help emphasize the divisions between supersteps. This simplicity offers a signifi-
cant advantage in convenience over other programming interfaces that require language
changes and sophisticated pre-compilers, since it does not require programmers to gener-
ate and keep track of extra files, and allows them to more easily use off-the-shelf integrated
development and build environments. Furthermore, if more readability is desired, one
can implement a parallel language with nothing more than a C-style preprocessor by us-
ing #define macros to replace if (bsp step()) with parbegin , if (bsp sync())
with parendbegin , bsp sync() with parend , and if (bsp cont()) with parcont ,
as shown in Fig. 5-7.

As far as we know, the only significant disadvantage of this code-skipping technique
is that resuming execution inside or after an unbounded or very long loop may take un-
necessary extra time because the skipping has to go through all previous iterations of the
loop before reaching the current superstep. We expect, however, that it is possible to solve
this problem by using a variant of bsp cont() that updates loop variables and curstep
without having to iterate through the loop.
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void bsp_run() parcont
throws BSPSyncException { step 2+n, part b

{ parbegin }
{ step 0 foo(); // func with sync
} parcont
parend; { step 3+n, part b
parbegin // explicit }
{ step 1 parend;
} } // end bsp_run()
parendbegin // shortcut
{ step 2, part a void foo() throws
} BSPSyncException
for ( int i=0; i<n; i++ ) { parcont
{ parcont { // cont. current step

{ step 2+i, part b step 2+n, part c
} }
parendbegin parendbegin
{ step 2+i+1, part a { step 3+n, part a
} }

} } // end foo()
// code continued in next column

Figure 5-7: BSP pseudo-code with code skipping and #define macros.

Table 5.2: Basic BSPMainWork methods
method meaning
int bsp spawn( String class,int n ) spawn n BSPWork’s of class class
int bsp spawn( BSPWork w,int n ) spawn n BSPWork’s of same class as w
void bsp postResult( Result res ) post result for watchers
Object bsp getRequest() get user input from watchers
boolean isMain() am I the main work?

BSPMainWork

A Bayanihan BSP program is started by giving the name of a subclass of BSPMainWork
to the BSPProgram object. BSPMainWork is a subclass of BSPWork that provides extra
methods for server-side control of a computation, as shown in Table 5.2. The BSPProgram
object assigns the BSPMainWork the reserved ID of 0, and calls its bsp main() method,
which is then expected to spawn work objects of the desired class. As the program runs,
the main work object runs together with the other processes, and can communicate with
them using BSP methods. In addition to spawning new work, the main work object can
be used for coordinating other work objects, for collecting and sending results to inter-
ested watcher clients, and for receiving and reacting to user requests. This is similar to the
common programming practice in SPMD/MPMD systems like PVM, MPI, and BSPLib of
having a “master” or “console” process that handles data distribution and coordinates the
operation of all the other processes.

To write an application, one can write separate BSPMainWork and BSPWork classes,
or a single BSPMainWork class with separate bsp main() and bsp run() methods. The



5.5. IMPLEMENTATION RESULTS 97

latter is useful when the main work object has the same fields as the other work objects,
and has the added advantage of keeping all the code in one file. Since bsp main() de-
faults to calling bsp run() , one can also write a single BSPMainWork class with a single
bsp run() method containing code for both the main work and the other processes. This
allows SPMD-style programming, and is useful in cases where the main work code is very
similar to the worker code, or where it is useful to see the master and worker codes for
each superstep in the same place. The isMain() function can be used within bsp run()
to let the main work process differentiate itself.

5.4.2 Sample Code

Figure 5-8 shows a matrix multiplication example demonstrating the use of the Bayanihan
BSP programming interface. Here, we use a single BSPMainWork subclass with separate
bsp main() and bsp run() methods. The initVars() method is called in both the
worker and main work objects before running bsp run() and bsp main() . The algo-
rithm used is based on one of the MPI example programs in [63], where each process i
from 1 to n is given a copy of the matrix B and row i− 1 of A, and computes row i− 1 of
the product C.

5.5 Implementation Results

By hiding the previously exposed implementation details of barrier synchronization and
process communication from the programmer, the new BSP programming interface makes
it much easier to write Bayanihan applications than before. At present, we have success-
fully used it not only to rewrite existing applications in a more readable and maintainable
SPMD style, but also to implement new programs and algorithms such as Jacobi iteration,
whose more complex communication patterns were difficult to express in the old model.

Unfortunately, while it is now possible to write a much wider variety of parallel pro-
grams with Bayanihan, such programs may not necessarily yield useful speedups yet since
the underlying implementation is still based on the master-worker model. For example,
even though one can now use peer-to-peer style communication patterns in one’s code,
these communications are still sequentialized at the implementation level since they are
all performed by the central server. Also, since all work objects are currently checkpointed
at the end of each superstep (i.e., workers send back their entire process state to the server
at each bsp sync() ), algorithms that keep large amounts of local state between super-
steps will perform poorly as this state would be unnecessarily transmitted back and forth
between the server and the worker machines.

Figure 5-9 shows speedup results from some tests using 11 200 MHz Pentium PCs run-
ning Windows NT 4.0 on a 10 Mbit Ethernet network, with Sun’s JDK 1.1.7 JVM on the
server and Netscape 4.03 on the 10 clients. The Mandelbrot test is a BSP version of the
original Bayanihan Mandelbrot demo running on a 400x400 pixel array divided into 256
square blocks, with an average depth of 2048 iterations/pixel. The matrix multiplication
test is a variation of the sample code in Sect. 5.4.2 modified such that the worker processes
get 10 rows of A at a time (to improve granularity) and do not get C back from the main
work. It was run using 700x700 float matrices. The Jacobi iteration test solves Poisson’s



98 CHAPTER 5. BSP AS A PROGRAMMING MODEL FOR VOLUNTEER COMPUTING

public class BSPMatMultMain extends BSPMainWork {
transient Matrix A, B, C;
// ... some code omitted ...
/** called before bsp_main() and bsp_run() */
public void initVars() // initialize B and C
{ B = (Matrix)bsp_restore( "B" );

C = (Matrix)bsp_restore( "C" );
}
/** run by main work on server */
public void bsp_main() throws BSPSyncException
{ if ( bsp_step() ) // *** superstep 0 ***

{ // create n-by-n matrices, spawn, send a and B
A = createSampleMatrix( n ); B = createSampleMatrix( n );
bsp_spawn( this, n ); // spawn n workers of this type
for ( int i=1; i <= n; i++ )
{ bsp_put( i, "B", B ); // write B

bsp_send( i, i-1, A.getRow(i-1) ); // send row of A
}

}
if ( bsp_sync() ) // *** superstep 1 ***
{ // workers compute C; main does nothing
}
if ( bsp_sync() ) // *** superstep 2 ***
{ // collect and print results on server

BSPMessage msg;
C = new Matrix( n );
while( (msg = bsp_recv()) != null ) // get result rows
{ C.setRow( msg.getBSPTag(), (Row)msg.getData() );
}
trace( "C = \n" + C ); // print C
bsp_save( "C", C ); // allow workers to get C

}
if ( bsp_sync() ) // *** superstep 3 ***
{ // workers print C
}

}
/** run by worker clients */
public void bsp_run() throws BSPSyncException
{ if ( bsp_step() ) // *** superstep 1 ***

{ // restored local var B contains matrix B put
BSPMessage msg = bsp_recv(); // get row
if ( msg != null )
{ int i = msg.getBSPTag(); // get row #

Row a = (Row)msg.getData(); // get row data
Row c = Matrix.rowMatMult( a, B ); // compute
bsp_send( MAIN, i, c ); // send row back

}
bsp_unregister( "B" ); // we don’t need B anymore

}
if ( bsp_sync() ) // *** superstep 2 ***
{ // main collects results, get it

bsp_get( MAIN, "C", "C" ); // get C for next step
}
if ( bsp_sync() ) // *** superstep 3 ***
{ // local var C now contains result

trace( "C = \n" + C ) // print C
}

}
}

Figure 5-8: Bayanihan BSP code for matrix multiplication.
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Figure 5-9: Bayanihan BSP applications: Speedup relative to sequential version.

equation on a 500x500 double array decomposed into a 10x10 2D grid, with an exchange
of border cells and a barrier synchronization done at the end of each iteration.

As shown, the embarassingly parallel Mandelbrot demo performed and scaled reason-
ably well. In contrast, the much finer-grain Jacobi iteration test performed very poorly,
being at best about 40 times slower than a pure sequential version. This is not so surpris-
ing, though, given that it takes less time for the server to compute an element than to send
it to another processor. Although speedups are theoretically still possible if the array is
very large and workers are allowed to keep “dirty” local state for a long time, we cannot
expect to get any speedup in this case since work objects send all their elements back to
the server at the end of each iteration. On a more positive note, the matrix multiplication
test, which is more coarse-grain (and happens to employ a master-worker-like commu-
nication pattern, although it is written as a message-passing program), performed much
better than the Jacobi iteration test, though not as well as the Mandelbrot test. The lim-
iting factor in this case was the time needed to send the matrix B to the worker clients.
Since we currently do not support multicast protocols, the server has to send B to workers
individually. Thus, the broadcast time grows linearly with the number of worker clients,
and eventually limits speedup. In the future, it may be possible to improve performance
by using a more communication-efficient algorithm. However, most such algorithms keep
local state between supersteps, and will thus probably be inefficient in the current imple-
mentation.

5.6 Improving Bayanihan BSP

Our experimental results show that at present, Bayanihan BSP works well mainly for
coarse-grain applications that do not require keeping a lot of dirty local state. This lim-
itation, however, is not due to the BSP programming model or interface but is due to our
current runtime system implementation. By implementing additional mechanisms at the
runtime system level, we should be able to make Bayanihan BSP perform and scale well
even for other applications.
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5.6.1 Caching

One mechanism that can make a significant difference is caching. In the matrix multiplica-
tion program in Sect. 5.4.2, for example, the matrix B is sent to all virtual processes. With-
out caching, this would cause B to be sent over the communication network potentially
thousands of times. Adding a cache to each work engine as shown in Fig. 5-3 in Sect. 5.3.1,
we can save communication time by just giving the virtual processes references to B instead
of the actual data. Then, when a process gets a reference to B, it first checks the cache for
a copy. If it finds one, then it simply uses that copy. Otherwise, it would request the actual
data from the server, and then put it in the local cache so it can be used by other virtual
processes running on the same machine. In this way, we can send the actual data of B only
once for each physical processor, regardless of how many virtual processes that processor
may run. Using such a scheme, we have achieved the results for the matrix multiplication
program presented in Sect. 5.5. (The original version without caching performed much
more poorly.)

This same caching scheme can also be extended to allow us to keep dirty local data
on the worker machines between supersteps. The idea is to use references in the reverse
direction as well. That is, instead of sending the actual state data of a virtual process when
we send the result object back to the server, we only send references to this data. The global
communication phase (which is executed by the server) is performed by exchanging these
references between the virtual processes. As these virtual processes (i.e., the work objects)
get farmed out again to the physical machines in the next batch, they bring the references
with them. If a virtual process is assigned to a physical machine that has the actual data in
its local cache, then the reference is resolved by simply taking the data from the local cache
(without communications). Otherwise, the work engine requests the data from the server.
If the server has the data in its own cache, it returns it to the requesting worker, just as in
our previous scheme. However, if the server does not have the data in its own cache, then
it requests it from the worker machine who has it, and then stores it in its cache for future
use.

This extended scheme not only improves performance by allowing virtual processes to
keep their state in local memory between supersteps, but also allows us to exploit locality
by allowing different virtual processes within the same physical machine to communicate
with each other between supersteps without transmitting actual data over the network.

Implementing this scheme in Bayanihan, we have been able to achieve significantly
faster turnaround times by eliminating the massive (and mostly useless) transfer of local
state between the server and each worker at the end and beginning of each superstep.
Running the Jacobi iteration application on a 10 Mbit Ethernet network with one client
worker (to test maximum efficiency), for example, the new caching scheme saved us 5 to 6
seconds per superstep, corresponding to the time it takes to send all the data (i.e., a 500x500
double array) to server and back to the client.2 Unfortunately, we still have not gotten
any useful speedups with the Jacobi iteration application due to its very fine granularity.
This situation should improve, however, in applications where the computation time per

2Theoretically, such an array, which consists of 500× 500× 8 = 2× 106 bytes, has a minimum transfer time
of 2 × 106 bytes/(107 bits per s/8 bits per byte) = 1.6 s each way or 3.6 s total per superstep. The extra delay
of around 2 s in this case is probably mostly due to processing and serialization overhead.
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element becomes large enough, as may be the case in other problems such as those in
computational fluid dynamics.

5.6.2 Other Mechanisms Supporting Caching

Although this new caching system successfully reduces communication time in controlled
lab experiments, it is not yet complete. In particular, several mechanisms still need to be
implemented to make this caching system practical for use in real systems. These include
the following:

Checkpoint-on-quit. If a volunteer stops a work engine – either explicitly or by closing
his or her browser – the work engine applet should send all its dirty data back to the server.
This prevents data from being lost when volunteers leave.

Periodic checkpointing and smart rollback. Since a volunteer’s machine can crash with-
out having a chance to send all its dirty data back to the server, we cannot depend on
checkpoint-on-quit alone. We need to require the work engines on volunteers’ machines
to periodically (but not too often) send their dirty data back to the server, and then have
the server store these so it can perform a rollback from these checkpoints in the future if
necessary.

Interestingly, it may be possible to do rollbacks faster in Bayanihan BSP than in other
parallel systems (and even other BSP systems). Since the server is responsible for trans-
ferring data between virtual processes at the end of each superstep, it can keep track of
dependencies between processes, and even store the actual message data transferred be-
tween them. Thus, to recover the lost state of a process for a particular step, for example,
the server need only retrieve the input messages of that process for that step, and rerun the
work object for that step using these messages.3 There is no need to rollback all the other
processes.

Lazy Migration and Itinerant Processes. Finally, for caching to be beneficial, the virtual
processes (i.e., work objects) must be assigned as much as possible to physical machines
that already have the data needed by the processes in their local cache. Thus, for processes
that rely on a large amount of dirty local state, we should apply a lazy migration strategy
that keeps them on the same physical machines as long as possible. On the other hand,
processes that do not have much local state but need a lot of data from another process can
actually be migrated to where the data is currently located instead of having the data to
sent it. We may call these itinerant processes.

Our current implementation of Bayanihan BSP does not try to direct migration in any
way. We simply send all work objects back to the server and then farm them out again from
the server using the same eager scheduler we use for ordinary master-worker applications.

3Note that the server need not have the actual message data with it. These data can actually be stored in
the local caches of other machines as long as they have not crashed.
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With a large number of heterogenous machines, this basically results in a random migra-
tion pattern. A better scheme would keep track of where a work object “belongs” and try
to assign work objects to each worker accordingly when the worker calls getWork() .

One question open to further research here, however, is how to apply the idea of eager
scheduling, which achieves adaptive parallelism by allowing work objects to be reassigned
to more than one processor as long as it is not yet done. Reassigning work objects too
eagerly may result in too much data transfer – which would be unnecessary if the original
worker is about to produce the result shortly anyway. On the other hand, waiting too
long to reassign work could let slow or crashed workers become bottlenecks in the system.
Thus, we need to develop sound rules for determining how long we should wait before
trying to reassign a work object to another worker.

5.6.3 Other Possible Improvements

In addition to these mechanisms, which we need to implement in order to allow caching
and keeping of dirty local state, there are also other mechanisms that are not really neces-
sary, but may be able to improve performance and scalability as well. These include:

Sabotage-tolerance. Once the checkpointing and rollback mechanisms are in place, it
should be possible to implement sabotage-tolerance mechanisms such as those described
in Sect. 3.5.2 and Chap. 6. In particular, backtracking should still work, although it may
now be complicated by the occasional need to rollback processes that have been done by a
caught saboteur.

Programming interface improvements. Aside from performance improvements, we can
also look into implementing some programming interface improvements such as the loop
version of bsp cont() mentioned in Sect. 5.4.1, tag-based retrieval of incoming messages,
and saving and restoration of BSP variables in recursive functions.

Peer-to-peer communication. Performing the global communication operations on the
server makes it easy for worker applets to communicate with each other despite the Java
applet security restrictions that limit an applet to communicating only with its source host.
Unfortunately, it can also be an unnecessary sequential bottleneck in cases where such
restrictions can be removed, such as within a trusted intranet. For these situations, we can
implement peer-to-peer communication by modifying the work engine to send and accept
communication requests to and from other work engines directly. We can still distribute
the resulting worker code as an applet by either signing it, or asking volunteers to manually
turn off their browser’s applet network restrictions (Microsoft Internet Explorer 4.0, Sun’s
Hot Java browser, and Sun’s Java plug-in [59], which works with Netscape, allow this).
Implementing peer-to-peer communications should greatly improve the performance of
parallel algorithms that depend on parallelizing communications as well as computation
(such as many arrays written for systolic arrays and such). Note, however, that making use
of peer-to-peer communication also makes it more difficult to achieve adaptive parallelism
and fault-tolerance. Thus, it should only be done in systems where these are not necessary.
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Dataflow-style BSP. Because a BSP process can only receive data sent by other processes
in the previous superstep, it is possible to determine in advance which data a process is
going to need in a superstep before the superstep starts. This allows us to determine the
data dependencies between the different processes at each superstep, and allows us to
migrate processes to take advantage of locality as noted above. Furthermore, however,
it also allows us to implement “soft barriers” that would allow processes to go through
a barrier as soon as the incoming data that they need are already available. These soft
barriers in turn, free processes from having to wait for a global barrier synchronization and
can improve not only running time but overall scalability as well.

Note that although this goes against the original idea behind BSP, and breaks the theo-
retical BSP model [150, 139], it may be worth considering in volunteer computing systems,
where adaptive parallelism, reliability, performance, and scalability are much more impor-
tant goals than theoretical analyzability.

5.7 Conclusion

5.7.1 Related Work

Several Java-based parallel computing systems have been developed with interfaces based
on PVM (such as JPVM [47]), and MPI, (such as mpiJava [9], jmpi [39], DOGMA [77], and
others [10]). Most of these systems, however, use command-line Java applications, and thus
still require some time and user expertise to set up. Making them use Java applets that can
be run in a browser would be difficult or impossible not only because they require peer-
to-peer communication not normally available to applets, but also because the semantics
of the conventional message-passing models they use make it difficult to implement the
adaptive load-balancing and fault-tolerance mechanisms required in the dynamic environ-
ment of applet-based volunteer systems.

Applet-based systems, such as Charlotte [12], Javelin [23], DAMPP [151], JET [111], and
SWC [8], are much easier to use than application-based systems since they allow a volun-
teer to join a computation by simply visiting a web page. However, applet security restric-
tions and the need for adaptive parallelism and crash-tolerance seem to have so far limited
most of these applet-based systems to using master-worker-based programming models.
Among applet-based systems, the most general and programmable one so far seems to
be Charlotte [12]. Charlotte has a clean programming interface that provides transparent
cache-coherent distributed shared memory between browser-based worker applets, while
supporting adaptive parallelism in the form of eager scheduling. Its execution model is
very similar to BSP in that computation is also divided by barrier synchronizations into
superstep-like parallel blocks, and changes to distributed memory are not felt by other
processors until after the next barrier. In addition, Charlotte has a distributed caching
mechanism that may be more fully developed than Bayanihan’s. Charlotte, however, re-
quires writing a separate Java class for each superstep, and does not have message-passing
functions. Thus, Charlotte is less intuitive and somewhat harder to use for long multi-
step programs than Bayanihan BSP, which provides programmers with a more traditional
SPMD-style interface.
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As far as we know, Bayanihan BSP is the first and only explicitly BSP-style parallel pro-
gramming interface implemented in pure Java. The only other Java-based BSP implemen-
tation we are aware of is NestStep [82]. NestStep, however, does not use the Java language
itself. It extends Java with its own new language constructs, and requires programmers to
use a compiler that generates bytecodes than can be run by an application-based (not web-
based) Java virtual machine (JVM). Thus, NestStep is more difficult to use than Bayanihan
BSP, not only for users but for programmers as well. It does, however, provide mecha-
nisms for distributed shared memory and for nesting supersteps in hierarchical fashion,
that may be worth looking into.

5.7.2 Summary

In this chapter, we have shown how the BSP programming model can be implemented
and used in Java-based volunteer computing systems. Our implementation, which uses
Bayanihan’s master-worker runtime system can take advantage of existing mechanisms for
adaptive parallelism and fault-tolerance, such as eager scheduling, majority voting, and
spot-checking, while providing a new programming interface with familiar and powerful
methods for remote memory and message passing operations. At present, the performance
and scalability of our implementation is limited in some applications, but is expected to
improve with future work.

Meanwhile, the BSP programming interface we have developed represents a significant
improvement in programmability and flexibility over current programming interfaces for
volunteer-based systems. It shows that contrary to popular belief and practice, volunteer
computing need not be limited to master-worker and embarassingly parallel applications,
but can be used for message-passing style applications as well. Thus, the only major lim-
itation left for volunteer computing applications is that they must be coarse-grain enough
to be efficient on commodity Internet lines – which is the same limitation faced by NOWs,
metacomputers, and wide-area parallel computing systems in general. Furthermore, since
our implementation here only requires an underlying master-worker runtime system, it
should be implementable in other volunteer computing systems with similar runtime sys-
tems. Thus, our results here represent not only what can be done with Bayanihan but what
can potentially be done in other volunteer computing systems as well.



Chapter 6

Reliability in the Presence of
Malicious Volunteers

6.1 Introduction

The key advantage of volunteer computing over other forms of parallel computing and
metacomputing is its ease-of-use and accessibility to the general public. It is by making it
easy for anyone on the Internet to join in a parallel computation that volunteer computing
makes it possible to build very large parallel computing networks very quickly. This same
advantage, however, also creates a new problem: if we allow anyone to join a computation,
how do we prevent malicious volunteers from sabotaging the computation by submitting bad
results?

This problem is relatively new and unstudied. To date, most research in “fault-
tolerance” in the context of parallel computing has been focused on what we may call
“failure-tolerance” or “crash-tolerance”, where all faults are assumed to be in the form of
stopping faults – faults where one or more of the processing elements, or the communi-
cation network links between them, simply stops generating or transmitting data, either
temporarily or permanently. Little research has been done on protecting against faults
where the processors do not stop producing data, but instead produce bad data. Even
less research has been done on cases where these bad data are generated intentionally and
maliciously by hostile parties.1

This is actually not very surprising because until recently, most parallel computing has
been done within single-machine supercomputers, where the processors and the network
connecting them are all physically located in the same place and under the control of the
owner of the computation. In such systems, the primary, if not the only, source of faults
would be the hardware itself. Since hardware faults are relatively rare and generally tend
to cause either stopping faults or random data corruption, it has mostly been possible to
either simply ignore the possibility of errors, or use parity and checksum schemes to detect

1Actually, in the field of distributed systems, much research is being done on this problem in the form of
Byzantine agreement. See, for example, [93]. However, the emphases and goals in these works tend to be
different from those of researchers who use parallel computing for high-performance computation, and thus
their results tend to be impractical, inefficient, or both, when used in such contexts.
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data corruption errors and treat uncorrectable errors as stopping faults (i.e., invalidate the
entire answer, making it equivalent to no answer at all).

Today, however, as more and more parallel computing is being done on network-based
systems where the processing elements are not only physically distributed but also owned
by different people, these traditional fault-tolerance mechanisms are becoming insuffi-
cient. While parity and checksum schemes work well against random hardware errors,
they are not effective against intentional attacks by malicious volunteers – or saboteurs –
who can disassemble the code, figure out the checksum-generating part, and be able to pro-
duce valid checksums for bad data. Thus, there is a need for new sabotage-tolerance mecha-
nisms that work in the presence of malicious saboteurs without depending on checksums
or cryptographic techniques.

In this chapter, we present such techniques. We begin with an overview of general
approaches to this problem, including choosing appropriate applications, using mecha-
nisms for authentication, encrypted computation, and obfuscation, and using techniques
based on redundancy and randomization. When then proceed to focus on the latter and
present a theoretical analysis of the the traditional technique of majority voting as well as
the new technique of spot-checking, first presented in Sect. 3.5.2. Then, in the second half
of this chapter, we integrate these mechanisms by presenting the new idea of credibility-
based fault-tolerance, which uses probability estimates to efficiently limit and direct the use
of redundancy. We demonstrate the effectivity of credibility-based fault-tolerance through
parallel Monte Carlo simulations, and show how credibility-based fault-tolerance allows
us to achieve error rates that are orders-of-magnitude smaller than that of traditional vot-
ing for the same slowdown. Finally, we discuss how credibility-based fault tolerance can
also be used with other mechanisms and in other applications.

6.2 Overview of Approaches

6.2.1 Application Choice

Reliability is easier to achieve in some applications than in others. Some such applications
include naturally fault-tolerant applications, as well as those involving verifiable computa-
tions.

Naturally Fault-Tolerant Applications

Naturally fault-tolerant computations are ones that do not require 100% accuracy, but can
still produce acceptable results even with error rates as large as a few percent. As noted
in Chap. 4, these include image rendering applications where a few scattered erroneous
pixels would be unnoticeable or can be averaged out to make them unnoticeable, as well as
self-correcting algorithms such as genetic algorithms where bad results are naturally screened
out by the fitness function used for natural selection.

It may also be possible to make some Monte Carlo simulations naturally fault-tolerant.
If the goal of the simulation is simply to predict the expected behavior of a system, and
we are not concerned with outliers and behavior at the tails of the statistical curve, then
we can tolerate faults by guarding against the effect of outliers. We can do this either by
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heuristically detecting and rejecting outliers based on specific knowledge about the sys-
tem, or by using median-based statistics instead of the more common mean-based statistics.
Median-based statistics may cost more in terms of computation and memory space (since
they require some kind of sorting-based algorithm), but are generally much more robust
against outliers than mean-based statistics and do not require heuristics or prior knowl-
edge about the system.

Note that while these techniques address the problem of faults in the form of outliers,
however, they may not work against saboteurs who submit answers that are incorrect but
are intentionally made close enough to the mean or median so as not to get rejected by our
algorithms. This problem remains to be studied more carefully, but intuitively, we suspect
that in this case, we can still get acceptably accurate values for the mean or median, but
other statistics such as the standard deviation and the shape of the curve may be affected.

Verifiable Computations

Verifiable computations are those where it is possible to check the validity of a given result
in much less time than it takes to generate the result itself. These computations allow us
to detect errors and have them be recomputed as necessary. Thus, although it may take
a little extra time to get the final result, we can at least guarantee its correctness. Note
that the verification itself can be done either automatically by machine or, in some cases,
by a human user. In some applications of image rendering, for example, a human user
can look at the final results and visually recognize unacceptable errors and have them
be recomputed. Another example is SETI@home, which uses many algorithms to verify
the significance and validity of possible signals of alien life, but has a team of scientists
personally study and verify any positive results that withstand these rigorous tests.

Many verifiable computations take the form of search problems such as SETI@home and
those discussed in Sect. 4.2. In general, these search problems involve looking for solutions
or input sets (e.g., a key, a set of factors, or a set of radio signals) that satisfy particular
criteria (e.g., they decode an encrypted message, they factor an integer, or they indicate
the existence of alien life). Thus, verification can be done simply by checking solutions for
the required criteria.

The best such search problems with respect to verifiability and reliability are those
where: (1) checking for the criteria can be done quickly, and (2) true positive solutions are
known to be rare, if they exist at all. An example of this is the RC5 code cracking appli-
cation, where there is known to be only one correct key, and the server can easily check
claims by workers of finding the right key by using the key to decrypt the message. The
rarity of true positive solutions in such problems means that we do not expect to receive
positive results very often, and can thus allow more time for the verification process. It
also means that denial-of-service attacks, launched by saboteurs attempting to overload
the server by giving it a lot of false positive results to verify, will not work. That is, a
saboteur cannot keep a server busy verifying results because to do so, it would have to
find many true positive results – which we know is impossible since such results are rare.
If a saboteur tries to give a false positive result instead, however, it would get caught and
can be blacklisted (as discussed in Sects. 3.5.2 and 6.3.3) and thus prevented from submitting
more results.
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Unfortunately, although false positives are not a problem in such applications, false
negatives are. If a worker claims that a certain subrange does not contain the right key, for
example, the only way to verify that this claim is true is to search the subrange again. Thus,
this means that volunteers can cheat – i.e., get paid for doing work without actually doing
work. At the same time, they can also prevent the system from finding the right answer by
intentionally not reporting the presence of the correct answer even if it is there. Moreover,
in this case, we cannot rely on spot-checking (discussed in Sects. 3.5.2 and 6.3.3). That is,
since the correct result for a vast majority of subranges is negative (i.e., “not found”), it is
impossible to tell if a saboteur is cheating unless we give it a spotter work whose correct
answer is known to be ‘positive (i.e., ‘found”). Unfortunately, since such results are rare,
we probably do not know of any, or know only a few – which are useless since smart
saboteurs can then learn to recognize them and avoid them by watching for the same work
being given again.

Fortunately, however, if our only goal is to find the answer and make sure the answer
is correct, then despite these problems, we can still achieve our goal relatively easily. In
this case, we can employ a scheme similar to eager scheduling (see Sect. 3.5.1) – i.e., if the
master receives results for all the work but does not find a positive result, then it goes back
and starts reassigning work. Eventually, assuming that there are more good workers than
bad, a good worker will find the right solution. More specifically, if we assume that the
probability of finding a positive result is 1−f (e.g., if the fraction of workers that are bad is
f and all workers run at the same speed), then we can expect the average number of times
we have to go through the whole batch before finding the right answer to be 1/(1 − f)
times more than before. Interestingly, this means that if f is small, there is practically no
extra cost required to protect against cheating workers. And, even if f is as large as 1/2,
the average slowdown is only around 2. Moreover, if we somehow know the credibility
of each worker, as described in Chap. 6,2 then we can improve efficiency even further by
employing some form of credibility-based fault tolerance wherein we give more priority to
redoing negative results done by less credible sources, than to those done by known-good
workers.

In paid systems, a harder problem is to avoid losing money by paying cheating vol-
unteers who do not actually do any work. One way to address this problem is to only
pay for positive results. This is done in distributed.net and other projects where the prize
money goes to the volunteer who finds the key. In this case, there is no economic incentive
for a worker to cheat since if it does not do any work, it cannot get paid. Addressing this
problem in cases where we have to pay workers even for negative results (e.g., in a com-
mercial market-based environment) is a much harder problem. One way is suggested in
[99], and involves setting trace points in the worker’s code when the worker stores current
state information (i.e., the trace at that point), and requiring workers to submit these traces
together with their results to prove that they did the work. In this scheme, the master can
verify that a worker did the work (with high probability) by selecting a random subset of
these traces and comparing them to their correct values.

2In this case, since we do not have spot-checking, a worker’s credibility would be a static credibility, based
on its domain and other information about it, as described in Sect. 6.4.2.



6.2. OVERVIEW OF APPROACHES 109

6.2.2 Authentication, Encryption, and Obfuscation

Regardless of whether the applications we run are naturally fault-tolerant, verifiable, or
otherwise, it would still be useful to try to reduce errors as much as possible. One way to
do so, is to deal with the source of the errors – the saboteurs themselves.

Malicious attacks can either come from an internal saboteur who is actually a participat-
ing volunteer, or an external spoofer – a node that has not volunteered, but sends messages
forged to look like they came from one of the volunteers. Spoofing can be prevented by
using digital signatures [136]. These enable the server to verify that a result packet indeed
comes from a volunteer. They can also be used in the other direction, to assure a volun-
teer that an applet really comes from the server, and not from a spoofer. Digital signatures
are most useful in protecting non-anonymous volunteer systems, such as forced volunteer
networks or NOIAs (see Chap. 2), from external attack. Unfortunately, however, digital
signatures are ineffective against internal saboteurs, and thus useless in anonymous vol-
unteer systems where anyone, even saboteurs, are allowed to volunteer. This is because
digital signatures can only authenticate the source of a data packet, not its content.

One way to authenticate the content of a data packet is to include a checksum com-
putation in the code. This way, if the node does not run the code, or runs it incorrectly,
the checksum will not match, and the server can be alerted. In most cases, checksums
will catch both unintentional errors, and simple malicious attacks such as returning ran-
dom packets. We can also use checksums to authenticate sources (and prevent spoofing)
by transmitting a different checksum key with each work packet. This way, an external
spoofer would not know the correct key to use, and cannot forge bogus result packets.

Digital signatures and checksums are only useful against malicious attacks if volun-
teers are forced to compute them and cannot compute them independently of the work.
This is true for NOIAs, where the node hardware and firmware can prevent users from
disassembling or modifying the bytecodes they receive from the server. In general, how-
ever, it is possible for sophisticated malicious volunteers to disassemble the bytecode they
receive, identify the signature and checksum generating code, and use these to forge a
result packet containing arbitrary data. One way to guarantee that a node cannot fake a
checksum computation is to prevent it from disassembling the code. This is not an easy
task, but in some cases, it may be possible to apply encrypted computation techniques, as
described in App. B.

If cryptographically preventing disassembly is not possible, we can resort to periodic
obfuscation to make understanding the disassembled code and isolating the checksum code
as difficult as possible.3 Periodic obfuscation extends the idea of static obfuscation [30] by
periodically obfuscating code in time. For example, we can randomly vary the checksum
formula and its location within the bytecode from work packet to work packet. This would
prevent hackers from manually disassembling and modifying the bytecode once and for
all. We can also insert dummy code at varying locations and scramble the code in many
other ways (as discussed in App. B).

This idea of dynamically and periodically changing how the code looks like is similar to

3In earlier versions of our work [131, 132], we called this idea dynamic obfuscation. We decided to rename
this term since “dynamic” obfuscation may sound like obfuscation that happens as the program runs (e.g., as
in “dynamic compilation”), which is not the case here.
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techniques used by polymorphic computer viruses, which use them to hide themselves from
anti-virus programs [28]. Although very difficult, deobfuscating polymorphic viruses is
not impossible because viruses, being self-reproductive (by definition), contain the obfus-
cating code. Thus, once one version has been cracked and disassembled, it is possible to re-
verse engineer this code and develop an “antidote” which can disassemble other instances
of the viruses. Periodic obfuscation in volunteer computing, however, has the advantage
of using the server to do the obfuscation. This should make it possible to constantly and
arbitrarily replace the code, and make it impossible for hackers to catch up. (As noted
in App. B, this idea is very similar to the idea of time-limited blackbox security as applied
to mobile agents [71].) Provided that the volunteer computing system allows the work
code to change from work object to work object (as Bayanihan does, for example), periodic
obfuscation should be easier to implement and more generally applicable than encrypted
computation.

Although we have not done any concrete implementations involving encrypted com-
putation or periodic obfuscation, we have started surveying various techniques from other
fields. Appendix B contains a critique paper covering some of these works, and suggesting
future work. It also discusses the application of encrypted computation and obfuscation
not only to the problem of sabotage but to the problem of espionage as well.

6.2.3 Redundancy and Randomization

In cases where one cannot rely on authentication, encrypted computation, and obfuscation,
there are generally two effective ways of dealing with intelligent saboteurs: redundancy and
randomization. Redundancy allows us to check each worker’s results against those of others
doing the same work. Assuming that there are sufficiently more good workers than bad in
the volunteer population, this allows us to identify bad answers and reduce our chances
of accepting them as good. Randomization protects us against specific intentional attacks
by saboteurs. If the work server always operates in the same predictable manner, then it
may be possible for an intelligent saboteur to develop a specialized plan of attack against
it. Randomizing the behavior of the server, however, greatly limits what a saboteur can
do, since, even if he can develop specific attacks, he can never be sure if those attacks are
applicable at any given moment.

Techniques that use redundancy and randomization include voting and spot-checking,
as described in Sect. 3.5.2. In voting, redundancy takes the form of having each work object
be done a number of times by different workers. Randomization is used in selecting the
workers, and makes it hard for saboteurs to gather votes. In spot-checking, redundancy
takes the form of the spotter works, and is less than that in voting since we generally do
not have to do all work objects several times. Randomization is used in selecting when to
spot-check a worker. As we shall see, this lowers the error rate by forcing the worker to
submit bad results less often in order to avoid being caught.

Since techniques that use redundancy and randomization are more general and robust
(i.e., they assume less about the application, or about what workers can or cannot do with
the code they receive), we will focus on them more than on other approaches in the rest of
this chapter. Note, however, that we can always combine these techniques with the other
approaches to achieve even better reliability. Thus, although we will show that voting and
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spot-checking, used together through credibility-based fault-tolerance, can achieve very
low error rates even without encryption and obfuscation, it would still be useful to imple-
ment the latter techniques if possible. Doing so would reduce the original error rates even
further, and result in even lower error rates (especially since voting’s error rate shrinks
exponentially with the original error rate as shown in Sect. 6.3.2). Similarly, although these
techniques may be able to make error rates low enough to be useful in ordinary applica-
tions, we can get even lower error rates if we use these techniques for running naturally
fault-tolerant or verifiable applications.

6.3 Voting and Spot-checking

In this section, we present the traditional technique of majority voting, and the new tech-
nique of spot-checking. We show how they can be implemented, and analyze their theoret-
ical performance. Empirical results from simulations are shown in Sect. 6.5.2.

6.3.1 Models and Assumptions

In this section, we describe the models and assumptions that we make in our analyses
in the following sections. Although we have made simplifying assumptions to make the
problems more tractable in some cases, we believe that these assumptions are not too un-
realistic to be practical. In any case, Sect. 6.6 discusses how our results can be extended to
cases with even more realistic assumptions.

Computational Model. We assume a work-pool-based master-worker model of computation,
which we described in Sect. 4.1, and which is presently used not only in Bayanihan but in
most, if not all, volunteer computing systems, as well as in many grid systems, meta-
computing systems, and other wide-area network-based parallel computing systems in
general.

To recall, in this model, a computation is divided into a sequence of batches, each of
which consists of many mutually independent work objects. At the start of each batch,
these work objects are placed in a work pool by the master node, and are then distributed
to different worker nodes who execute them in parallel and return their results to the
master. When the master has collected the results for all the work objects, it generates the
next batch of work objects (possibly using data from the results of the current batch), puts
them in the work pool, and repeats this whole process.

Error rate. We define the error rate, ε, as the ratio of bad results or errors among the
final results accepted at the end of the batch. Alternatively, we can also define it as the
probability of each individual final result being bad, such that on average, the expected
number of errors in a batch of N results would be given by εN .

For simplicity, we assume for the most part that batches are independent of each other,
such that errors in one batch do not affect the next. Moreover, in designing our mecha-
nisms, we assume that there is a non-zero acceptable error rate, εacc, and aim to make the



112 CHAPTER 6. RELIABILITY IN THE PRESENCE OF MALICIOUS VOLUNTEERS

error rate lower than it. Thus, these mechanisms would work best with naturally fault-
tolerant applications, which can tolerate having a relatively large fraction (1% or more) of
the individual final results being bad, and thus have high acceptable error rates. In other
applications which do not tolerate any errors at all, εacc must be set to make the probability
of getting any errors at all correspondingly small. For example, suppose that a computa-
tion has 10 batches of 100 work objects each, and the batches are dependent on each other
such that a single error in any of the 10 batches will cause the whole computation to fail. In
this case, to make the probability that the whole computation would fail, P (fail), less than
1%, the error rate ε, which is the probability of an individual result failing, must be at most
εacc = P (fail)/(10 × 100) = 0.001% = 1 × 10−5. Fortunately, although this error rate may
seem small, we show in Sect. 6.4 that achieving such low error rates does not necessarily
require a lot of redundancy.

Saboteurs. We assume that a faulty fraction, f , of the worker population, P , are sabo-
teurs. The master node (which we assume is trustworthy) may not know the actual value
of f , but is allowed to assume an upper bound on it, such that no guarantees need be made
if the real faulty fraction is greater than the assumed bound.

For simplicity, we assume that all workers, including saboteurs, run at roughly the
same speed, such that the work objects are uniformly and randomly distributed among
the workers and saboteurs. Thus, since each result we receive is equally likely to come
from any of the workers, the original error rate – i.e., the expected error rate without fault-
tolerance – would simply be f .

Sabotage Rate and Collusion. For simplicity, we model each saboteur as a Bernoulli
process with a probability s of giving a bad result, and assume that s, called the sabotage
rate, is constant in time and the same for all saboteurs.

Note that this assumes that workers and saboteurs are independent of each other and
do not communicate. In particular, in cases where saboteurs do not always give bad results,
we assume that the saboteurs do not agree on when to give a bad result, but decide to do
so independently. However, if two or more saboteurs happen to decide to give a bad
result for a particular work entry, we will assume, unless otherwise stated, that their bad
answers would match. This allows saboteurs to “vote” together, and is a conservative
assumption since intuitively, we can expect final error rates to be lower if saboteurs cannot
vote together.

Redundancy and Slowdown. To measure the efficiency of fault-tolerance mechanisms,
we consider redundancy and slowdown. Redundancy is defined as the ratio of the aver-
age total number of work objects actually assigned to the workers in a batch when using
the mechanism, Ntotal , vs. the original number of work entries, N . Slowdown is defined
as a similar ratio between the running times of the computation with and without the use
of the mechanism. In general, redundancy leads to an equivalent slowdown, since we as-
sume that there are many times more work objects than workers, so that there are no idle
workers most of the time. For example, a mechanism that on average does all the work
twice will generally take twice as long. Note however, that in some cases – especially
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Figure 6-1: Eager scheduling work pool with m-first majority voting.

when workers can join, leave, or get blacklisted in the middle of a batch – slowdown may
be different from redundancy. If workers leave or are blacklisted, for example, then the
remaining workers must take over their work. This increases the slowdown, even though
the total amount of work, and thus the redundancy is the same.

In general, fault-tolerance mechanisms should aim to (in order of priority ): (1) mini-
mize the final error rate as much as possible, or at least reduce it to an acceptable level, (2)
minimize redundancy, and (3) minimize slowdown.

6.3.2 Majority Voting

Using an eager scheduling work pool as described in Sect. 3.5.1, we can easily implement
the traditional scheme of majority voting by leaving the done flag unset until we collect
2m − 1 results for each work entry from different workers,4 and then choosing the result
which has at least m or more matching instances (i.e., a majority) among the 2m− 1 copies.
More efficiently, we can employ an m-first voting scheme, as shown in Fig. 6-1, where we
stop collecting results after we get m matching instances of a result. Assuming that bad
answers match, this scheme achieves the same error rate as simple majority voting, but
uses only half as much redundancy, averaging at around m/(1 − ϕ) compared to 2m − 1.
Given a fault rate, ϕ, representing the probability of an individual final result being bad
(generally equal to fs, or simply f , if s = 1), we can compute the final error rate due to
majority voting, εmajv, as:

εmajv(ϕ,m) =
2m−1∑

j=m

(
2m− 1

j

)
ϕj(1− ϕ)(2m−1−j) (6.1)

which is the probability that the bad results form the majority. As shown in Fig. 6-2, this is
roughly exponential in m. More precisely, it can be shown to be bounded by the following

4In practice, we can prevent double-voting, and achieve lower error rates, by not giving a work object to
the same worker more than once. Our analysis, however, does not assume this.
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Figure 6-2: Majority Voting: theoretical error rate for various values of ϕ and m.

approximation [163]:5

εmajv(ϕ,m) <

(
2m− 1
m− 1

)
(ϕ(1− ϕ))m

1− 2ϕ

< ≈ (4ϕ(1− ϕ))m

2(1− 2ϕ)
√

π(m− 1)
(6.2)

Or, more simply, as ϕ decreases and m increases, we have:

εmajv(ϕ,m) ≈ (cϕ)m (6.3)

where c is a roughly constant function of ϕ and m, starting at
√

3− 2ϕ (i.e., around 1.7 for
small ϕ) at m = 2 and approaching 4 at m = ∞.

This exponentially shrinking error rate has two notable implications: (1) voting works
very well in systems with small ϕ, and (2) it gets increasingly better as ϕ decreases. Thus,
in systems with very low fault rates to begin with, such as hardware systems, it does not
take much redundancy to shrink the error to extremely low levels.

Unfortunately, however, voting also suffers from drawbacks that limit its applicability
to volunteer computing systems. First, it is inefficient when ϕ is not so small. Figure 6-2
shows, for example, at ϕ = 20%, doing all the work 6 times still leaves an error rate larger
than 1%. More generally, Fig. 6-3 shows how the slowdown required by voting to achieve
low error rates dramatically increases as ϕ increases. Second, and in many cases, more
importantly, it has a minimum redundancy of two. That is, any desired reduction of the
original error rate, no matter how small, requires doing all the work at least twice. This
is true regardless of ϕ, and even if we use the m-ahead voting scheme to be described in

5Actually, numerical computations seem to show that replacing m − 1 with m in the denominator would
work as well and provides a slightly tighter bound. However, a literal adaptation of Yuev’s derivation in [163]
(which expresses the formula in terms of k = m− 1 instead of m) yields the form in Eq. 6.2.
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Figure 6-3: Majority voting: theoretical slowdown required to achieve target error rates,
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Sect. 6.4.3, which performs better at larger values of ϕ. For these reasons, voting is only
practical in cases where: (1) the fault rate ϕ is small (i.e., ϕ <≈ 1%), and (2) either (a)
we have enough idle or spare nodes to take on the extra load without causing additional
slowdown (as in the case of hardware-redundant triple modular redundancy systems), or
(b) a slowdown of at least two (or in general m) is deemed to be an acceptable price to pay
for the desired error reduction.

6.3.3 Spot-Checking with Blacklisting

In cases where either the fault rate ϕ is large, or our maximum acceptable error rate is
not too small, we can use a novel alternative we call spot-checking, which can achieve better
error reductions than voting with redundancies less than two. In spot-checking, the master
node does not redo all the work objects two or more times, but instead randomly gives a
worker a spotter work object whose correct result is already known or will be known by
checking it in some manner afterwards.6 Then, if a worker is caught giving a bad result, the
master backtracks through all the results received from that worker so far, and invalidates
all of them. The master may also blacklist the caught saboteur so that it is prevented from
submitting any more bad results in the future.

Because spot-checking does not involve replicating all the work objects, it has a much
lower redundancy than voting. If we assume that the master spot-checks each worker with
a Bernoulli probability q, called the spot-check rate, then the redundancy, on average, will

6We are intentionally vague here about how spotter works are chosen and how they are checked. This is
to allow for different ways of implementing spot-checking. Some possible implementations are discussed in
Sect. 3.5.2.
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be just 1/(1 − q). For example, if q = 10%, then 10% of the work the master gives would
be spotter works. This means that on average, the master gives out (1/(1− 0.1)) = 1.11N
work objects during the course of a batch with N real work objects.

Even with this low redundancy, however, spot-checking can still achieve very low error
rates. The key here is that even though we do not double-check all the results given by a
worker, it is alright as long as the worker gets caught eventually (i.e., by the end of the
batch7), since in that case, backtracking will invalidate any unchecked bad results anyway.
Since the probability of a saboteur not getting caught shrinks exponentially with time (i.e.,
with the number of work objects received by a saboteur), the error rate decreases as well,
especially in large computations with many work objects to be done.

To see this, consider the case where caught saboteurs are blacklisted and never allowed
to return or do any more work (at least not within the current batch). In this case, errors
can only come from saboteurs that survive until the end of the batch. Assuming that a
saboteur is given a total of n work objects during a batch (i.e., n is the saboteur’s share
in the total work, i.e., N/P , plus the 1/(1 − q) redundancy due to spot-checking, plus the
extra load that the remaining workers have to take when a worker gets blacklisted), then
the average final error rate with spot-checking and blacklisting, εscbl, can be computed as:

εscbl(q, n, f, s)
= P (result taken at random is bad)
= s · P (result is from a saboteur)
= s · P (worker is a saboteur |worker survived)

= s · P (worker is a saboteur and worker survived)
P (worker survived)

=
sf(1− qs)n

(1− f) + f(1− qs)n
(6.4)

where s is the sabotage rate of a saboteur, f is the fraction of the original population that
were saboteurs, (1 − qs)n is the probability of a saboteur surviving through n turns, and
the denominator represents the fraction of the original worker population that survive to
the end of the batch, including both good and bad workers.

Figure 6-4 shows this error rate at various values of n and s. As shown, a maximum
point occurs at some s between 0 and 1. This makes intuitive sense. If a saboteur gave
bad results all the time (i.e., s = 1), it would tend to get caught too quickly. On the other
hand, although reducing s increases a saboteur’s chances of surviving, it also reduces the
total number of bad results that the saboteur tries to give. Thus, reducing it too much
eventually reduces the net error rate as well.

Unfortunately, there is no closed form for the exact maximum point of Eq. 6.4. How-
ever, we can find an upper bound by maximizing the following strict upper bound instead:

εscbl(q, n, f, s) < ε̂scbl(q, n, f, s) =
sf(1− qs)n

1− f
(6.5)

7. . . or by the end of the computation, if we can backtrack through past batches. In this thesis, however, we
will assume that we cannot backtrack through batches.
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Figure 6-4: Spot-checking with blacklisting: theoretical average error rate (εscbl), at q = 0.1
and f = 20%, for various values of s and n.

This upper bound has a maximum point at

ŝ∗scbl(q, n) = min
(

1,
1

q(n + 1)

)
(6.6)

and a maximum value of

ε̂∗scbl(q, n) =





f

1− f
· (1− q)n n ≤ 1−q

q

f

1− f
· ( n

n+1)n

q(n + 1)
otherwise

(6.7)

Since the expression ( n
n+1)n/(n + 1) is strictly and asymptotically bounded from above by

1/ne (where e is the base of the natural logarithm), we get:

εscbl(q, n, f, s) < ε̂∗scbl(q, n) <
f

1− f
· 1
qne

(6.8)

At first glance, this seems like a counter-intuitive result. It says that instead of reduc-
ing the expected error rate exponentially with n, as we first thought, spot-checking only
reduces it inversely with n. Note, however, that Eq. 6.8 represents the worst-case error rate
– i.e., given a saboteur who somehow knows n and q and selects s accordingly in advance.
Note that for any particular fixed value of s, εscbl still shrinks exponentially in time and
with n.

Intuitively, we can interpret the worst-case s given by Eq. 6.6 as saying that a saboteur’s
best bet is to plan on generating a constant number of errors in a batch. Specifically, a
saboteur should plan on generating nŝ∗scbl ≈ 1/q errors randomly distributed over the n
results. Similarly, Eq. 6.8 implies that the total number of errors that a master can expect
from a single saboteur is bounded by a constant 1/qe, regardless of n. Thus, to reduce the
fraction of errors, i.e., the error rate, it is to the master’s advantage to make the batches
longer so that n is larger.
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6.3.4 Spot-checking without Blacklisting

Ideally, we would like to permanently blacklist any saboteurs that we catch. Unfortu-
nately, however, this may not always be possible. Although we can require volunteers to
give their email addresses, and then blacklist saboteurs according to email address, it is
not too hard for a saboteur to create a new email account and volunteer as a “new” person.
(Microsoft’s hotmail.com free email service, for example, allows a user to create a new
account in a matter of minutes without having to submit authentic personal information
[96].) Blacklisting by IP address would not work either because many people use ISPs
that give them a dynamic address that changes every time they dial up. Requiring more
verifiable forms of identification such as home address and a telephone number can turn
away saboteurs, but would probably turn away many well-meaning volunteers as well.
Furthermore, in some cases, it might not be desirable to blacklist a worker permanently.
Good workers, for example, may occasionally suffer transient faults due to power fluctu-
ations, operating system glitches, etc. In these cases, we do not want to blacklist a node
immediately and permanently just because of a temporary fault that it did not intend to
produce. Thus, for all these reasons, it is useful to consider the effectivity of spot-checking
without blacklisting.

Unfortunately, if blacklisting cannot be enforced, and it is easy for a saboteur to leave
and immediately come back an unbounded number of times under a new identity, then
a saboteur can render spot-checking practically useless by joining a computation, doing
only one work object, submitting a bad result for it, and then leaving and repeating the
same process under a new identity. Of course, other factors, such as the time it takes to
forge a new identity and sign up as a new volunteer, will probably discourage a saboteur
from leaving and rejoining under a new identity too often. However, even if a saboteur
decides to limit its stay to at most a constant number of work objects l, then it can still do
significantly more damage than it could with blacklisting, as we shall see in this section.

Long-staying saboteurs. To derive a bound on the error due to spot-checking without
blacklisting, we first consider the case where l ≥ n – i.e., a saboteur stays at least as long
as a batch, or effectively, as long as possible until it gets caught or the batch ends. We also
assume, pessimistically, that a saboteur somehow knows when it is caught and is able to
rejoin under a new identity immediately.8 This second assumption implies two things: (1)
the probability of a final answer coming from a saboteur is simply f , since the number of
saboteurs in the system is constant, unlike the case with blacklisting, and (2) if a saboteur
gets caught near the end of the batch when the saboteur has only i < n work objects left
to do, then upon returning under a new identity, it would only need to survive through i
turns, instead of n. Thus, the average total error rate can be computed as follows:

err scnb(q, n, s) = f · 1
n
· s ·Average length of “last run”

=
fs

n

[
n(1− qs)n +

n−1∑

i=0

i(1− qs)iqs

]
(6.9)

8In practice, the master can continue to assign work and collect (but ignore) answers from caught saboteurs
so that they do not know they are caught. This would lead to lower error rates, as discussed in Sect. 6.6.
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Figure 6-5: Spot-checking without blacklisting: theoretical error rate with long-staying
saboteurs (err scnb), at f = 20% and q = 0.1, for various values of s and n.

where the value in brackets represents the average number of work objects a saboteur does
between the last time it is caught and the end of the batch. Errors can only come from this
last run because any errors before the last time it was caught would be invalidated by
backtracking.

This equation simplifies to:

err scnb(q, n, f, s) =
f(1− qs)(1− (1− qs)n)

qn
(6.10)

which is shown in Fig. 6-5. Interestingly, and somewhat surprisingly, although Eq. 6.10
seems less intuitive than Eq. 6.4, it still has a simple upper bound that is inversely propor-
tional to n. Specifically, Eq. 6.10 has a maximum at

s∗scnb(q, n) = min(1,
1− (n + 1)−1/n

q
) (6.11)

and has the value

err∗scnb(q, n, f) =





f(1− q)(1− (1− q)n) 1−(n+1)−1/n

qn ≥ 1
f

q(n + 1)
n+1

n

otherwise
(6.12)

which asymptotically approaches, and is strictly bounded from above by, the following
expression:

err∗scnb(q, n, f) <
f

qn
(6.13)
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Short-staying saboteurs. Of course, if there were no blacklisting, then saboteurs would
most likely choose to stay for a smaller number of turns, l < n, instead of waiting until
they are caught or blacklisted. Intuitively, this would lead to larger error rates because
saboteurs need only to survive uncaught for l turns or less, instead of n turns.

The analysis that leads to Eq. 6.13 allows us to get an approximate upper bound on the
error rate when l < n. To derive this upper bound, we first imagine that we can divide
the n work objects that a saboteur does in a batch into contiguous groups of l work objects
each. Then, we make the pessimistic assumption, as before, that a saboteur knows when
it is caught and immediately rejoins under a new identity if caught. Furthermore, we
assume – again pessimistically – that each saboteur needs only to survive until the end of
the current l-length group of work in order to have its errors accepted, and thus be able to
do damage. In this case, the error rate for each of the l-length groups can be derived using
Eq. 6.9, but substituting l for n. This leads to the following approximate upper bound for
the overall error rate:

err∗scl(q, l, f) <≈ f

ql
(6.14)

Note that this is approximate because if l does not divide n evenly, then the error rate for
the remaining piece (which would have length i < l) could be higher. (This is especially
true if we allow the saboteur to have a different sabotage rate for this shorter piece.) Note,
however, that if l is small compared to n, then the size of this remaining piece would be
small compared to the total size, and it would not affect the overall error rate very much.
Similarly, as l approaches n, then we end up with two pieces, a large l-length piece, and
a short i = n − l-length piece. Although the error rate in the shorter piece may be higher,
this is counterbalanced by the fact that the length of the piece is shorter as well, so the total
number of errors remains the same or becomes smaller. Thus, although further work may
be needed to refine this bound, Eq. 6.14 is good for now. In fact, at least for the results
shown in Fig. 6-16 in Sect. 6.5.2, Eq. 6.14 seems to be good enough.

Limiting error rates. In any case, the important point to note here is that the error rate
without blacklisting is significantly worse than that with blacklisting. Unlike the error
rate with blacklisting, Eq. 6.8, which shrinks inversely with n, the error rate without black-
listing, Eq. 6.14, shrinks inversely with l. This means that we cannot reduce the error by
making a batch longer. The best thing that we can do in this case, is to try to force sabo-
teurs to stay longer (i.e., increase l) by making it hard for them to forge a new identity or
by imposing delays.

If our batches are not too long, then we can impose a rule that new users would not be
allowed to join until the next batch, so that a saboteur does not gain anything by leaving
early. In this case, the error rates would be the same as in Sect. 6.3.3. This scheme is not
practical if batches are long, however, since it would waste the potential power of good
volunteers who would be forced to wait for the next batch.

6.3.5 Combining Spot-Checking and Voting

So far, we have seen that voting tends to reduce error rates exponentially in m with the
fault rate ϕ in the base, while spot-checking reduces error rates by a factor that is linear in
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the number of work objects given to a worker in a batch, n. This leads to the following idea:
why not use voting on top of spot-checking to exponentially reduce the already linearly
reduced error rates, and thus achieve much greater error reductions per redundancy?

Monte Carlo simulations, presented in Sect. 6.5.2, show that this idea actually works
well if we have blacklisting. In this case, spot-checking effectively lowers the fault rate
ϕ of each result from f down to ϕscbl = εscbl < f

1−f
1

qne as given in Eq. 6.8. This reduced
fault rate, when substituted into voting’s error rate as given by Eqs. 6.1 and 6.3, gives us an
error rate of roughly ε = (c · f

1−f
1

qne)
m, which is roughly (qne)m times better than majority

voting for the same m. Thus, for example, if spot-checking can reduce the fault rate by a
factor of 10, then voting would become about 100 times better at m = 2, 1000 times better
at m = 3, etc. Correspondingly, this also means that given a target error rate, εacc, voting
combined with spot-checking requires much less slowdown than voting alone.

Unfortunately, simulation results, as shown in Sect. 6.5.2 also show that simply com-
bining voting and spot-checking in this way does not work well without blacklisting. Not
only is the fault rate higher if saboteurs can come back under new identities every l turns,
but substituting the higher fault rate into voting’s error rate does not work either but gives
error rate predictions that are lower than what we get from simulations.

6.4 Credibility-based Fault-Tolerance

In this section, we present a new idea called credibility-based fault-tolerance that not only
address the shortcomings of blacklisting, but more significantly, provides a framework for
combining the benefits of voting, spot-checking, and possibly other mechanisms as well.

6.4.1 Overview: Credibility and the Credibility Threshold Principle

The key idea in credibility-based fault-tolerance is the Credibility Threshold Principle:
if we only accept a result for a work entry when the conditional probability of that result being
correct is at least some threshold ϑ, then the probability of accepting a correct result, averaged over
all work entries, would be at least ϑ. This principle implies that if we can somehow compute
the conditional probability that a work entry’s best result so far is correct, then we can
mathematically guarantee that the error rate (on average) will be less than some desired
εacc, by simply leaving the done flag unset until this conditional probability reaches the
threshold ϑ = 1− εacc.

To implement this idea, we attach credibility values to different objects in the system,
as shown in Fig. 6-1, where the credibility of some object X , written Cr(X), is defined as
an estimate of the conditional probability, given the current observed state of the system, that object
X is, or will give, a good result. As shown, we have four different types of credibility: that
of workers (CrP ), results (CrR), result groups (CrG ), and work entries (CrW ). The credibility
of a worker depends on its observed behavior such as the number of spot-checks it has
passed, as well as other assumptions such as the upper bound on the faulty fraction, f .
In general, we give less credibility to new workers who have not yet been spot-checked
enough, and more credibility to those who have passed many spot-checks and are thus less
likely to be saboteurs or have high sabotage rates. The credibility of a worker determines
the credibility of its results, which in turn determine the credibility of the result groups
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Figure 6-6: A credibility-enhanced eager scheduling work pool (using Eq. 6.19 and
Eq. 6.21).

in which they respectively belong. The credibility of a result group (which is composed
of matching results for a work entry) is computed as the conditional probability that its
results are correct, given the individual credibilities of these results, and those of other
results in other result groups for the same work entry. Finally, the credibility of the best
result group in a work entry gives us the credibility of the work entry itself, and gives us
an estimate of the probability that we will get a correct result for that work entry if we
accept its currently best result.

In the course of running a batch, the credibilities of the objects in the system change
as either: (1) workers pass spot-checks (thereby increasing the credibilities of their results
and their corresponding groups), (2) matching results are received for the same work entry
(thereby forming result groups, whose credibilities increase with their size), or (3) workers
get caught (thereby invalidating their results, and decreasing the credibilities of their cor-
responding result groups). Eventually, assuming there are enough good workers, the cred-
ibility of each work entry W reaches the threshold as the master gathers enough matching
results for a work entry W , or the solvers of the results in W pass enough spot-checks to
make the credibilities of their results go up, or both. When this happens, the work en-
try is marked done and the server stops reassigning it to workers. All this continues to
happen for all undone work entries until all the work entries reach the desired threshold
ϑ = 1 − εacc, at which point, the batch ends. At this point, assuming that our credibilities
are good estimates of the conditional probabilities they represent, the expected fraction of
final results that will be correct should be at least ϑ, and the expected error rate would thus
be at most εacc.

Note that this scheme automatically trades-off performance for correctness. It is similar
to voting except that here, m is not determined in advance, but is determined dynamically,
being made just as large as it needs to be for a work entry. Unlike traditional voting,
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however, we do not have to redo a work entry many times (or at all) if its result was done
by a worker which has been spot-checked many times and thus has a very high credibility.
In this way, a work object is only repeated however many times it takes to achieve the
desired correctness level, but no more. This makes credibility-based fault-tolerance very
efficient, and as will be shown in Sect. 5.5, allows it achieve very low error rates with little
redundancy.

6.4.2 Calculating Credibility

A key trick in this technique is computing the credibility values correctly. In general,
there are many possible credibility metrics, corresponding to different ways of observing
the current state of the system, as well as different ways of computing or estimating the
conditional probability of correctness based on observations. In this section, we present
particular metrics that we have found to be effective and discuss general guidelines for
developing other credibility metrics.

In deriving these metrics, it is often useful to first derive the dubiosity of some object
X , written Db(X), which is defined as an estimate of the conditional probability, given
the current observed state of the system, that object X is, or will give, a bad result. Given
Db(X), we can derive the credibility, Cr(X), as simply 1−Db(X).

Credibility of Workers and their Results

Without Spot-checking. Without spot-checking, the credibility of a worker P (and thus
of its results) must be computed solely from assumptions that we are willing to make. In
most cases, if we can assume a bound f on the faulty fraction of the worker population,
then we simply let CrP (P ) = 1− f for all workers, since f is the probability that a worker
chosen at random would be bad. In some cases, we can assign some workers different
credibilities. For example, if we know that machines from certain domains or subnets can
be trusted, then we can give them high credibilities – even as high as 100% if the machines
are under the personal control of the owners of the computation. On the other hand, if we
notice that saboteurs tend to come from a certain domain or subnet more often than usual,
then we can reduce the credibilities of any workers coming from that domain or subnet
accordingly.

With Spot-checking and Blacklisting. If we have spot-checking, then we can estimate
how likely a worker is to give a good result based on the number of spot-checks the worker
has passed, k. Intuitively, the more spot-checks a worker passes, the more confident we
can be that the worker is a good worker, or at least does not have a very high sabotage rate.
(Note that we do not need to consider the credibility of workers who are spot-checked and
caught, since these are removed from the system.)

In this case, it is easier to compute the credibility of a worker, P , by first considering
its dubiosity, DbP (P )scbl, which is equal to the conditional probability of receiving a bad
result from a worker, given that the worker has survived k spot-checks. This probability is
similar to that in Eq. 6.4, and can be computed and bounded as follows:

DbP (P )scbl = P (result from P is bad | P survived k spot-checks)
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=
sf(1− s)k

(1− f) + f(1− s)k
(6.15)

<
f

1− f
· 1
ke

(for any s) (6.16)

Subtracting this from 1 gives us the following credibility metric for spot-checking with
blacklisting:

CrP (P )scbl = 1− f

1− f
· 1
ke

(6.17)

which is a strict lower bound on the conditional probability of a worker P giving a good
result.

Note that this equation does not apply to workers that have not yet been spot-checked,
i.e., whose k is 0. In this case, we can just set CrP (P ) = 1− f . Alternatively, we can choose
to just ignore results from workers that have not yet been spot-checked.

Without Blacklisting. Unfortunately, deriving a worker’s credibility in the case when
there is no blacklisting is not as straightforward. In general, the probability of errors is
higher, so we need to assign lower credibilities to workers. Deriving an exact conditional
probability like Eq. 6.17, however, is difficult, since saboteurs can leave and return under
new identities, creating many different possible cases to consider. Thus, we take a different
approach.

First, we note that if we assume that workers who leave or get caught rejoin immedi-
ately, then the faulty fraction of the worker population stays constant at around f . This
implies that the probability of a randomly chosen worker being bad is around f , and thus
the probability of a randomly chosen answer being bad is f · s, where s is the sabotage
rate of the saboteurs. Unfortunately, however, we do not know s. We can, however, derive
a reasonable estimate, ŝ, based on k, and use that instead. One such estimate is ŝ = 1/k,
which we can intuitively arrive at by noting that a saboteur with a sabotage rate of 1/k
would have an average survival period of k spot-checks. Using this estimate, we get the
dubiosity of a worker without blacklisting as follows:

DbP (P )scnb = f · ŝ =
f

k
(6.18)

which gives us the following credibility metric:

CrP (P )scnb = 1− f

k
(6.19)

As shown in Sect. 5.5, this metric proves to work well in simulations, where it always
achieves the desired final error rate 1− ϑ, without overly sacrificing performance.

Credibility of Results. For now, we will simply assume that the credibility of a result R,
CrR(R), is simply equal to CrP (R.solver) where R.solver is the worker which produced
the result. In general, however, it is possible to distinguish it from the solver’s credibility.
For example, one possible way to guard against saboteurs who give good results at the
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beginning to earn credibility, but then start giving more bad results later when they know
their credibility is already high, may be to give results received later in the batch lower
credibility than those received earlier (when presumably a saboteur would give more good
answers to build up its credibility).

Credibility of Result Groups and Work Entries

If a work entry W has only one result R1 so far, then CrW (W ) is simply CrR(R1) of the
result, which, under our assumptions, is equal to the credibility CrP (R1.solver). If a work
entry has several results, then we group the matching results together into results groups,
and compute the credibility for each group based on the conditional probability of correct-
ness, given the current combination of results received so far.

Suppose we have g groups, each denoted as Ga, for 1 ≤ a ≤ g, with ma members
respectively. In the simple case where we assume all bad answers match, then g is at most
two, and we know that if we have two groups, one of them is sure to have the correct
results. In this case, we can compute the credibility of G1, as follows:

CrG
′(G1) (assuming bad answers match) (6.20)

=
P (G1 good)P (G2 bad)

P (get 2 groups where each Ga has ma members)

=
P (G1 good)P (G2 bad)

P (G1 good)P (G2 bad) + P (G1 bad)P (G2 good)

with a symmetric formula for G2. Here, P (Ga good) is the probability of all the results in
Ga being good, computed as

∏ma
i=1 CrR(Rai) for all results Rai in group Ga. Correspond-

ingly, P (Ga bad) is the probability of all the results in Ga being bad, given as
∏ma

i=1(1 −
CrR(Rai)).

More generally, if bad answers are not assumed to match, then not only can we can get
more than two results groups, but there is also a possibility of all of the result groups being
bad. Taking these into account leads to the more general formula:

CrG(Ga) =
P (Ga good)P (all others bad)

P (get g groups, where each Ga has ma members)
(6.21)

=

P (Ga good)
∏

i6=a

P (Gi bad)

g∏

j=1

P (Gj bad) +
g∑

j=1

P (Gj good)
∏

i6=j P (Gi bad)

Works 1 and 998 in Fig. 6-6 show some examples of how Eq. 6.21 is used.
For another example, suppose that we do not use spot-checking, so that the credibility

of a result R is simply CrR(R) = 1− f for all results, and suppose that we currently have
two groups of results, with m1 and m2 results, respectively. In this case, for each group
Ga, for 1 ≤ a ≤ 2, we have P (Ga good) = CrR(R)ma = (1 − f)ma , and P (Ga bad) =
(1− CrR(R))ma = fma , which gives us:

CrG
′(G1) (assuming bad answers match) (6.22)
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=
(1− f)m1fm2

(1− f)m1fm2 + fm1(1− f)m2

and

CrG(G1) =
(1− f)m1fm2

(1− f)m1fm2 + fm1(1− f)m2 + f (m1+m2)
(6.23)

Note that in computing the credibilities of result groups, unlike in computing the er-
ror rates in majority voting, assuming that bad answers need not all match (i.e., using
Eqs. 6.21 and 6.23) is more conservative. Suppose, for example, that a work entry W1 has
two different results from two different workers who both happen to have a credibility of
0.99. Also suppose that another work entry, W2, also has two different results from two
different workers, but in this case, these workers both happen to have a credibility of 0.8.
If we assume that all bad answers match, then Eq. 6.22 gives us a credibility of 0.5 for both
result groups, which intuitively makes sense since, in this case, we know for certain that
one of the results groups is correct, so picking one at random gives us a 50% of picking the
correct one. Intuitively, however, it seems reasonable to expect that W2 should be given
lower credibility than W1 since W2’s results come from less credible workers. Equation 6.23
takes this into account by allowing for the possibility of all the results groups being bad,
giving us credibilities of 0.497 and 0.444 for W1 and W2 respectively. Thus we see that
Eqs. 6.21 and 6.23 not only give us more conservative credibilities than Eqs. 6.20 and 6.22,
but also take into account the absolute values of the worker credibilities and not just their
relative values.

6.4.3 Using Credibility

There are a variety of ways to use credibility for fault-tolerance.

Spot-checking Alone

The simplest way to use credibility is to just depend on spot-checking alone. In this case,
we just wait until one worker with sufficiently high credibility submits a result for a work
entry, and then mark the work entry done. Note, however, that since spot-checking only
reduces the dubiosity inversely with k, and not exponentially, using credibility with spot-
checking alone is not practical unless the desired error rate, εacc = 1 − ϑ, is not much
smaller than f . Otherwise, it would take too long before the workers get spot-checked
enough times to gain enough credibility to reach the threshold.

Voting Alone (Margin-based Voting)

Without spot-checking, the credibility of each worker stays constant, but the credibility of
a work entry increases as more and more workers give the same result. By continuing to
collect results until the credibility threshold ϑ is reached, we effectively implement a kind
of dynamic voting scheme where the redundancy is not determined in advance but is made
as large as necessary depending on f and ϑ. More precisely, this scheme is equivalent to
margin-based voting or m-ahead voting, where we wait until one of the result groups has a
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Figure 6-7: m-ahead margin-based voting: theoretical error rate for various values of ϕ
and m.

margin of at least m more results than the other group. As we shall see, m-ahead margin-
based voting is better than m-first majority voting not only because it automatically ad-
justs the redundancy to achieve the desired error rate, but also because the redundancy it
requires is generally less than that required by majority voting to achieve the same error
rate.

Assuming bad answers match. If we assume that all workers have the same credibility,
1 − f , and if we assume that all bad answers match, then the minimum margin m by
which a result group must be ahead to reach the desired threshold ϑ is constant. To see
this, suppose that we have two groups, G1 and G2 with m1 and m2 results respectively,
and suppose (without loss of generality) that G1 is “ahead” of group G2 by m results – i.e.,
m1 = m2 + m. Substituting m1 = m2 + m into Eq. 6.22, we get the following credibility for
group G1:

CrG
′(G1) =

(1− f)m

fm + (1− f)m
(6.24)

Note that this credibility does not depend on either m1 or m2. Thus, we see that the proba-
bility of a result group being correct depends only on the margin m – i.e., how much ahead
that result group is when we choose it.

Subtracting CrG
′(G1) from 1, and making the equation more general by substituting

the fault rate ϕ for f as we did in Sect. 6.3.2, we get the average error rate of m-ahead
voting as follows:

εm−ahead(ϕ,m) =
ϕm

ϕm + (1− ϕ)m
(6.25)

As shown in Fig. 6-7, this error rate is still exponential in form, but is now lower than that
m-first majority voting (shown in Fig. 6-2) for the same m.
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Given a target error rate εacc, and a corresponding credibility threshold ϑ = 1 − εacc,
we can solve Eq. 6.25 to get the following formula for the minimum m required to achieve
the threshold:

m′
min(ϕ, ϑ) =

⌈
ln(1−ϑ

ϑ )
ln( ϕ

1−ϕ)

⌉
(6.26)

≈ dlogϕ (1− ϑ)e = dlogϕ εacce , if ϕ and εacc are not large (6.27)

This m corresponds to the minimum redundancy required by m-ahead voting. The actual
redundancy, however, is unbounded since it is possible to keep on collecting results as
long as no results group gets m results more than the other. Fortunately, however, in
practice, this redundancy is not too large. We can derive this redundancy by considering
this scheme as a form of the well-known “gambler’s ruin” problem, where in this case,
the gambler starts with m dollars, makes $1 dollar bets with a probability f of winning
each bet, and plays until he either earns a net of m more dollars (equivalent to the case of
getting m more bad results than good), or until he loses all his money (equivalent to the
case of getting m more good results than bad). Doing so, we can show that if ϕ < 1/2,
then the expected redundancy required can be bounded by m/(1 − 2ϕ) [90], which is not
much bigger than m if ϕ is small. Thus, for a given ϕ, the average redundancy required in
margin-based voting to achieve an error rate less than εacc is approximately:

Ave. redundancy of m-ahead voting ≈ m′
min(ϕ, ϑ)
1− 2ϕ

≈ dlogϕ εacce
1− 2ϕ

≈ dlogϕ εacce , if ϕ is small (6.28)

Thus, we see that m-ahead voting effectively gets rid of the constant c in Eq. 6.3 while
using only slightly more redundancy (i.e., m/(1 − 2ϕ) vs. m/(1 − ϕ)). Comparing their
performance, we find that for small values of ϕ and m, m-ahead voting is roughly the
same as m-first voting, but as the required value of m to achieve the desired error rate gets
larger, m-ahead voting gets comparatively faster. For values of ϕ greater than 10% and a
target error rate εacc smaller than 1 × 10−6, for example, m-ahead voting tends to take 1.5
to 2 times less redundancy than m-first voting to achieve the same error rate.

Assuming bad answers may not match. If we allow for multiple bad answers, then we
can arrive at similar results by substituting m1 = m2 + m into Eq. 6.23 instead of Eq. 6.22,
and then solving for the minimum margin m required to reach the credibility threshold. In
this case, the solution is not simple and is not constant, but depends on the current size of
the smaller group (i.e., m2). Its value is largest when m2 = 0, and very quickly approaches
Eq. 6.26 as m2 becomes bigger. Thus at worst, the required m in this case is given by:

mmin(ϕ, ϑ, m2 = 0) =

⌈
ln( (1−ϑ)

2ϑ )
ln( ϕ

1−ϕ)

⌉
(6.29)

≈ dlogϕ (εacc/2)e (6.30)



6.4. CREDIBILITY-BASED FAULT-TOLERANCE 129

In this equation, the value before taking the ceiling is larger than that in Eq. 6.26, but only
by a small amount. For example, it is only around 15% larger for εacc = 0.01 (for any
f < 0.5), only around 7.5% larger for εacc = 1 × 10−4, and gets even closer to Eq. 6.26 as
εacc becomes smaller. Added to the fact that this minimum m is even closer to Eq. 6.26
for m2 > 0, this means that unless the values involved are near an integer boundary,
the minimum m required would be the same as that required when we assume all bad
answers match. Thus, in many cases, allowing bad answers not to match does not affect
performance very much.

Voting and Spot-checking Combined

Although credibility-based fault-tolerance can be used with voting alone or spot-checking
alone, it is best used to integrate voting and spot-checking together. In this case, we start
with all workers effectively having a credibility of 1 − f and start collecting results. If
the credibility threshold ϑ is low enough, and the batch is long, then by the time we go
around the circular work pool, the workers may have already gained enough credibility
(by passing spot-checks) to make their results acceptable. In this case, we do not need to
do voting and we can reach our desired error rate with only the 1/(1− q) redundancy due
to the spotter works. If ϑ is high, then spot-checking would not be enough, so we start
reassigning work, collecting redundant results, and voting.

Since spot-checking causes the dubiosity of surviving workers to shrink inversely with
time, however, it allows us to reach the desired threshold in much less time than with
voting alone. More precisely, spot-checking effectively reduces the fault rate ϕ in Eq. 6.26
by the the average number of times the surviving workers have been spot-checked, k.
This reduces the base of the logarithm in Eq. 6.27, and thus reduces mmin dramatically
as k increases in time. Furthermore, if we allow workers to accumulate credibility across
batches, then k can become even larger, and can reduce the redundancy even further. In
Sect. 5.5, for example, we simulated cases with 10 batches of N = 10000 work objects each,
distributed across P = 200 workers, assuming f = 20% and q = 10%, and we show that we
can reach an error rate of 1× 10−6 with an average slowdown of only around 3, compared
to m-first voting’s 32 and m-ahead voting’s 16.

Another advantage of using credibility in combining voting and spot-checking is that
it works well even if we cannot enforce blacklisting. By using the credibility metric from
Eq. 6.19, we effectively neutralize the effect of saboteurs who only do a few pieces of work
and then rejoin under a new identity. As shown in Sect. 6.5.2, there is now no advantage
to doing so, and in fact, it seems that there is now more incentive for a saboteur to stay on
for longer periods.

Using Credibility-based Voting for Spot-checking

Although using credibility to combine voting and spot-checking already works quite well,
we can gain even more performance by using voting for spot-checking.

So far, we have assumed that a master spot-checks a worker by giving it a piece of work
whose correct result is already known. Since this implies that either the master itself (as
in the case in Sect. 3.5.2), or one of a few completely trusted workers, must do the work
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to determine the correct result, we generally assume that the spot-check rate q needs to be
small (i.e., less than 10%). Since k is roughly qn, this limits the rate at which credibilities
increase and thus limits performance.

Fortunately, we can attain much better performance by using credibility-based voting
as a spot-checking mechanism. That is, whenever one of a work entry’s result groups
reaches the threshold (such that the work entry can be considered done), we: (1) increment
the k value of the solvers of the results in the winning group, and (2) treat those in the
losing groups as if they had failed a spot-check (i.e., we remove them from the system and
invalidate their other results).

If we assume that we have to do all the work at least twice, such that all results returned
by a worker would have to participate in a vote, then using these votes to spot-check a
worker implies that a worker will get spot-checked k = n times – i.e., 1/q times as much
as before when a worker could expect to get spot-checked only k = nq times in a batch.
This implies a corresponding decrease in the error rate and a corresponding increase in
the credibility of good workers, which in turn allows the voting to go even faster. For
example, if q = 10%, this results in a worker getting spot-checked 10 times more, and a
fault rate that is 10 times smaller. As noted in Sect. 6.3.5 this would improve the error rate
10m times for a given m – in addition to the improvement we already have when using
simple spot-checking. Or, viewed another way, this improves the base in Eq. 6.27, and
allows us to achieve desired credibility thresholds in less time (i.e., with lower values of
m). In the simulations in Sect. 6.5.2, for example, this reduces the slowdown required to
achieve an error rate of 1× 10−6 at f = 20% from around 3.5 (without blacklisting) to only
around 2.5.

Note that this technique is only made possible by using credibility-based voting and
ordinary spot-checking to “bootstrap” the whole process. Naı̈vely using traditional ma-
jority voting to spot-check workers would be dangerous because the chance of saboteurs
outvoting good workers and thus getting them blacklisted would be significant, especially
if f is not small. Credibility-based voting works because it guarantees that we do not vote
until the probability that the vote will be right is high enough. Thus, it naturally limits the
probability of good workers being outvoted to a very small value. Note, however, that we
cannot start using voting for spot-checking until the result groups actually start reaching
the threshold and voting. This implies that: (1) using voting for spot-checking is only ben-
eficial when the redundancy is already at least two, and (2) we need to maintain normal
spot-checking (at least for the first few batches) to allow the workers to gain enough cred-
ibility to reach the threshold early enough. Otherwise, we will not gain any improvement
because we would either not do credibility-based voting at all (in the first case), or start
doing it too late to make a big difference (in the second case).

6.5 Simulation Results

6.5.1 The Simulator

To verify our theoretical results, we have developed a Monte Carlo simulator that simu-
lates the behavior of an eager scheduling work pool in the presence of saboteurs and var-
ious fault-tolerance mechanisms. This simulator uses a real eager scheduling work pool
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implementation (taken from Bayanihan), but uses token work objects that do not contain
any executable code. To simulate the workers and saboteurs, we create a list of P worker
entries and randomly select fP of them to be saboteurs. We then simulate a computation
done by these workers by going through the list in round-robin manner, each time simu-
lating the action of the current worker contacting the master to return a result (for the work
object it received in its previous turn) and to get new work. This assumes, as in Sect. 6.3.1,
that all workers have exactly the same speed, so that the work is equally distributed among
the workers, and each worker gets to take a turn before any other worker is allowed to take
a second turn.

To simulate faults, we make each saboteur randomly decide to mark its result “bad”
with probability s. At the same time, we simulate spot-checking by letting the master give
out a spotter work randomly with probability q, and then check if the result returned for
that work by its solver is marked bad. Then, at the end of batch (i.e., when all the work
entries are marked done), we count the number of bad results among the final results, and
divide that by N to get the error rate for the batch. We then create the next batch of work,
and repeat this whole process using the same list of workers and saboteurs, keeping track
of the error rates for each batch until the end of the simulated computation.

Since we assume that all workers have the same speed, we can estimate the running
time of a batch by counting the number of rounds we make through the worker list before
the batch ends. That is, each round represents the time it takes one worker to execute one
work object (i.e., within that time, all P workers can finish 1 work object each in parallel),
and the total number of rounds represents the total amount of time it takes to finish the
batch in parallel. This metric works even if some workers temporarily or permanently
leave the system due to blacklisting, for example. In addition, we can also compute the
slowdown of the system by dividing the running time (measured by counting rounds) by
the ideal running time given by N/P . This is useful for measuring the performance of the
various fault-tolerance mechanisms.

Finally, to ensure statistical significance of our results, we use the Monte Carlo API
described in Sect. 4.6.2 to do r runs of the simulator, each with the same parameters but
with different, non-correlated, random number seeds, and then take the sample mean and
the sample standard deviation, σ, of each variable of interest. Dividing σ by

√
r gives us an

estimate of the expected standard deviation of the mean itself given r samples, and thus
gives us a rough measure of the precision and accuracy of the mean.9

For our experiments, we ran r = 100 runs of simulated computation, each consisting
of a sequence of 10 batches of N = 10000 work objects each, done by P = 200 workers.
These numbers were chosen to be small enough to be simulatable in a reasonable amount
of time, but large enough to provide good precision (i.e., the smallest measurable error rate
is 1× 10−7) and to prevent blacklisting from killing all the saboteurs too early. In addition,
the work-per-worker ratio, N/P = 50, was chosen to be large enough to show the effects of
spot-checking, while still being representative of potential real applications. Also, having
the computation go through 10 batches allows us to see the benefits of letting good work-
ers gain higher credibility over time. When doing blacklisting, we only do batch-limited

9In general, the mean of r samples of a random variable with a distribution that has a mean µ and standard
deviation σ, has a distribution with a mean of µ and a standard deviation of σ/

√
r [70]. That is, the mean

becomes a more precise estimate of the original µ as we get more samples.
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Figure 6-8: Majority voting: slowdown vs. maximum final error rate at various values of f
and m = {2, 3, 4}.

blacklisting, which means that we allow blacklisted nodes to return at the start of the next
batch. However, these return with a different worker ID and a clear record. Specifically, a
returning saboteur’s k is set back to zero and its credibility is correspondingly reset.

6.5.2 Results

Figures 6-8 to 6-23 show the experimental results we get from running our Monte Carlo
simulator.

Majority voting. Figure 6-8 plots the resulting slowdown and error rate from majority
voting given different values of the initial faulty fraction f (assuming a sabotage rate of 1).
This graph is like Fig. 6-2 turned on its side, except that m is replaced by slowdown, and
the values of f are different. As shown, when f is large, majority voting requires a lot of
redundancy to achieve even relatively large error rates. Analytically extending the line for
f = 0.2, we find that it would take a slowdown of more than 32 to achieve a final error rate
of 1× 10−6. Note, however, that the slope becomes less steep as f becomes smaller. (Note
that only one point for f = 0.01 is shown because the other points resulted in no errors in
our experiments.)

Spot-checking with blacklisting. Figure 6-9 shows the error rates due to spot-checking
with blacklisting, showing how the error rate varies with s as predicted in Eq. 6.4 and
Fig. 6-4. As shown, in contrast to majority voting, spot-checking works well for large faulty
fractions f . In fact, Fig. 6-9 shows that even when there are more saboteurs than good
workers (i.e., in the first case, f = 70%), we can still get relatively low error rates (i.e., in
this case, ≈ 4.5%). This fact can be very useful for naturally fault-tolerant applications
where such error rates may be acceptable already.
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Figure 6-9: Spot-checking with batch-limited blacklisting: simulated and theoretical error
rates vs. s at q = 0.1, N = 10000, P = 200 for f = 0.7 down to f = 0.01. The solid curves
represent theoretically predicted error rates using the actual observed values of n, while
the dashed curves represent a purely theoretical predictions assuming n = (N/P )/(1− q).

Note that in this case, n is not constant because remaining nodes end up doing more
work as more nodes get blacklisted. This change in n causes the upper tail of the curves
at f = 0.5 and f = 0.7 to go down, and the maximum point to shift slightly. As n is not
straightforward to predict exactly, we compute the theoretical curves shown in Fig. 6-9 by
substituting the actual n measured from the experiments into Eq. 6.4. As shown in Fig. 6-
9, the experimental results match well with these theoretical results and confirm them.
In practice, of course, we may not know the actual n in advance. In this case, however,
it is safe to assume that n = (N/P )/(1 − q) (i.e., the original worker’s share plus the
redundancy due to spot-checking), since we know that n would always be at least this
much on average. The dashed curves in Fig. 6-9 show the predicted error rates we get by
assuming n = (N/P )/(1− q), and show that these are indeed conservative upper bounds
that are always greater than the actual average error rates.

Spot-checking without blacklisting. Figure 6-10 shows the error rates due to spot-
checking with blacklisting, showing how the error rate varies with the length-of-stay l
as discussed in Sect. 6.3.4. (Here, as in Sect. 6.3.4, we pessimistically assume that a caught
saboteur knows when it has been caught and immediately returns under a new identity.)
As shown, the actual error rates in this case are biggest for low l, and are bounded from
above by f/ql (and, of course, f ), just as predicted by Eq. 6.14 in Sect. 6.3.4.

Combining voting and spot-checking. Figures 6-11 and 6-12 shows the results of using
voting and spot-checking together without credibility-based fault-tolerance, as discussed
in Sect. 6.3.5.

Figure 6-11 shows the case with blacklisting enabled. As noted in Sect. 6.3.5, the result-
ing error rate is simply that which we would get by substituting the reduced fault rate due
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P = 200, f = 0.1.

to spot-checking, ϕscbl = εscbl < f
1−f

1
qne , (from Eq. 6.8) into voting’s error rate as given by

Eq. 6.1. Note that although some data points may seem to exceed their corresponding the-
oretical values, particularly in Fig. 6-11(b), this does not represent a failure in our model,
but is most likely because the error rates at these points are close to the limit of precision
of our experiments (i.e., 1× 10−7) and thus are more prone to variance.

Figure 6-12 shows the case without blacklisting. (For clarity, we just plot the maximum
error rate here, instead of showing the error rates at various values of s as we do in Fig. 6-
10.) As shown, voting with spot-checking but no blacklisting performs better than simple
voting without spot-checking, but worse than voting with spot-checking and blacklisting.
Note, however, that the error rate cannot be predicted or bounded by simply substituting
ϕscnb = err scl < f/ql into Eq. 6.1. This is shown by the solid line, which actually represents
an even more conservative bound, given by f/(q min(l,mN/P )), to account for the fact
that larger l values do not make the error rate smaller when l becomes greater than the
work to be done by a worker in a batch, mN/P . As shown, even with this adjustment,
the solid line becomes lower than the actual error rate at some point. Why this happens is
currently not clear and can be a subject of future research.

Credibility-based voting with spot-checking and blacklisting. Figure 6-13 shows the
results of using credibility-based voting and spot-checking with batch-limited blacklist-
ing, using the credibility metric CrP (P )scbl from Eq. 6.17. Here, each group of points
corresponding to a credibility level is divided into three curves corresponding to f =
0.2, 0.1 and 0.05, respectively. Most significantly, this plot shows that, as intended, the
average error rate never goes above 1− ϑ, regardless of s and f .

One thing that is not shown in Fig. 6-13 is that while the maximum error rate remains
roughly the same (as limited by 1 − ϑ), more and more slowdown is being needed to
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Figure 6-13: Credibility-based voting with spot-checking and batch-limited blacklisting:
error rate vs. s at f = {0.2, 0.1, 0.05}.

guarantee the bounds on the error rate. The slowdown incurred in achieving the maximum
error rate for a particular value of f and ϑ is shown in Fig. 6-14. Note how the slopes of
the lines here are much better than those in simple majority voting, thus allowing us to
achieve lower error rates in less time. For example, whereas majority voting would have
required a slowdown of more than 32 to achieve an error rate of 1× 10−6 for f = 0.2, here
we only need around 3. Furthermore, note that credibility-based fault-tolerance allows us
not to use voting at all if it is not necessary, as shown by the points with redundancy less
than 2, which represent points where spot-checking was enough to reduce f down to the
threshold 1− ϑ without requiring voting.

Figure 6-15 shows the effect of worker credibility on the slowdown. As shown, it takes
less time to achieve the target error rates in the tenth batch than in the first batch. This
is because by the tenth batch, good workers have already passed many spot-checks and
thus already have correspondingly higher credibilities. These high credibilities allow us to
accept results submitted by these workers more quickly, i.e., without having to redo them,
and thus lead to finishing the batch sooner.

Credibility-based voting with spot-checking, no blacklisting. Figure 6-16 shows how
credibility-based fault-tolerance works even in cases where we do not have blacklisting
and saboteurs can leave after doing l work objects, and then come back under a new iden-
tity. In this case, we use the credibility metric CrP (P )scnb from Eq. 6.19, and measure the
error rate at various values of s for f = 0.2 and ϑ = 0.9999. As shown, even without
blacklisting, we successfully guarantee that the error rate never exceeds 1− ϑ = 1× 10−4,
regardless of l.

Interestingly, it seems that in the beginning, error rates are highest at l = 1 and decrease
with l, as predicted in Sect. 6.3.4. However, at some point above l = 120, the error rates get
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Figure 6-15: Credibility-based voting with spot-checking and batch-limited blacklisting:
slowdown vs. maximum final error rate for: (a) first batch, (b) tenth batch.



138 CHAPTER 6. RELIABILITY IN THE PRESENCE OF MALICIOUS VOLUNTEERS

0.E+00

5.E-06

1.E-05

2.E-05

2.E-05

3.E-05

3.E-05

0 50 100 150 200 250

l

er
r

stay for l or until caught stay until caught

Figure 6-16: Credibility-based voting with spot-checking, no blacklisting: error rate vs.
length-of-stay l at f = 0.2 and ϑ = 0.9999 averaged over 10 batches.

stay for l or until caught stay until caught

0.E+00

5.E-06

1.E-05

2.E-05

2.E-05

3.E-05

3.E-05

4.E-05

4.E-05

5.E-05

5.E-05

0 50 100 150 200 250

l

er
r

0.E+00

5.E-06

1.E-05

2.E-05

2.E-05

3.E-05

3.E-05

4.E-05

4.E-05

5.E-05

0 50 100 150 200 250

l

er
r

(b)(a)

Figure 6-17: Credibility-based voting with spot-checking, no blacklisting: error rate vs.
length-of-stay l at f = 0.2 and ϑ = 0.9999 for: (a) first batch, (b) tenth batch.



6.5. SIMULATION RESULTS 139

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s

er
r

0.99 0.999 0.9999 0.99999 0.999999

Figure 6-18: Credibility-based voting with spot-checking, no blacklisting: error rate vs. s
at f = {0.2, 0.1, 0.05}, assuming saboteur stays until caught and then rejoins immediately.

dramatically larger, and seems to stay roughly constant. It is not yet clear exactly why this
happens, but we can get a clue by looking at the corresponding plots for the first and last
batches, shown in Fig. 6-17. Here, we see that the anomaly does not exist in the first batch,
but exists in the last batch. (Although not shown, the anomaly exists in other batches
after the first as well.) This leads us to suspect that the anomaly has something to do
with saboteurs being able to survive until the next batch and keeping the credibility they
gained in previous batches. In any case, it would seem from this graph that it is generally
advantageous to stay as long as possible and not to quit early. Taking this strategy to the
extreme, a saboteur can simply stay in the system and not leave prematurely unless it is
caught. As shown in Fig. 6-16, this leads to high error rates relative to fixing l. Thus, for
the rest of our experiments, we will assume that saboteurs follow this strategy.

Given this assumption, Fig. 6-18 shows the error rates we get with credibility-based
voting and spot-checking without blacklisting, for different values of ϑ, using the credibil-
ity metric CrP (P )scnb. Again, we note that the error never exceeds the threshold 1−ϑ. The
slowdown is shown in Figs. 6-19 and 6-20, which show how performance is still much bet-
ter than with majority voting, although slightly less than that with blacklisting as shown
in Figs. 6-14 and 6-15. This is expected since CrP (P )scnb, is generally lower (and thus more
conservative), than the one used with blacklisting CrP (P )scbl, and thus it takes slightly
more redundancy to allow it to reach the desired threshold ϑ.

Using credibility-based voting for spot-checking. Finally, Figs. 6-21 to 6-23 show the re-
sults of using credibility-based voting to spot-check workers. Figure 6-21 shows how it
still guarantees that the error rate threshold is reached, and Figs. 6-22 and 6-23 show the
slowdown. As shown, the slope in Fig. 6-22 is even better than that of the case with black-
listing shown in Fig. 6-14. Here, we can now achieve an error rate of less than 1 × 10−6
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Figure 6-19: Credibility-based voting with spot-checking, no blacklisting: average slow-
down vs. maximum final error rate at ϑ = 0.99, . . . , 0.999999 at various values of f , assum-
ing saboteur stays until caught and then rejoins immediately.
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Figure 6-20: Credibility-based voting with spot-checking, no blacklisting: slowdown vs.
maximum final error rate for (a) first batch, (b) tenth batch.
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Figure 6-21: Using credibility-based voting for spot-checking, no blacklisting: error rate
vs. s at f = 0.2, 0.1, 0.05 for various thresholds ϑ, assuming saboteur stays until caught
and rejoins immediately.

from f = 0.2, with just a little over 2.5 redundancy. Comparing this with majority voting
as shown in Fig. 6-8, this shows that for the same redudancy, we get an error rate that is
almost 105 times better.

6.6 Conclusion

In this chapter, we have proposed new mechanisms for addressing the largely unstudied
problem of sabotage-tolerance, and have demonstrated the potential effectivity of these
mechanisms through mathematical analysis and simulation. A logical next step for re-
search, therefore, is to implement and apply these techniques to real systems, and start
benefitting from them. This should not be too difficult because the master-worker model
to which these mechanisms apply is widely used today not only in volunteer computing
systems but in other metacomputing and grid computing systems as well.

In the process of applying these mechanisms, questions may arise with respect to as-
sumptions or implementation details. Some questions and variations that we can explore
in further research include the following:

• Handling cases where saboteurs can collude on when to vote together. This would
imply a change in P (Ga bad) in Eq. 6.21.

• Incorporating the use of checksums. A worker which submits a result that fails a
checksum would be treated as if it had been spot-checked and caught submitting a
bad result. (A worker which passes a checksum, however, must still go through the
regular spot-checking mechanisms, since we assume that saboteurs may be able to
disassemble the code, and forge good checksums for bad data.)
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Figure 6-23: Using credibility-based voting for spot-checking, no blacklisting: slowdown
vs. maximum final error rate for: (a) first batch, (b) tenth batch.



6.6. CONCLUSION 143

• Incorporating the use of periodic obfuscation. By obfuscating code with a check-
sum, we can reduce the probability of a saboteur forging a good checksum for bad
data. If we can then estimate the probability that a saboteur can successfully forge
a good checksum despite the obfuscation, we can use it in calculating the worker’s
dubiosity, and therefore its credibility. Since this dubiosity should be lower than the
case without obfuscation, it should allow us to reach the desired credibility thresh-
olds faster than before.

• Incorporating the use of encrypted computation techniques. An example would
be using a random number to encode the computation in such a way as to prevent
saboteurs from voting together by preventing their bad results from matching. This
would imply a change in P (Ga bad) for any result groups containing more than one
result, since the probability that those groups would be formed by bad results would
now be very small.

• Not telling saboteurs when they are caught. In the case where saboteurs can come
back right away, the server can achieve lower error rates by continuing to give work
to the saboteur, but ignoring its results. In this way, the saboteur cannot know when
it has been caught, and cannot return right away. At best, it can leave after a reason-
ably short l. We have not analyzed this rigorously, but intuitively, it seems that this
should lead to an error rate of around f/qle instead of f/ql for spot-checking without
blacklisting. Also, in this case, using a credibility of 1 − f/ke instead of 1/fk might
work now, even without blacklisting.

• Using credibility in other ways. So far, our use of credibility has been based on
using an eager scheduling work pool. It is also possible to use credibility in other
ways. For example, we can keep track of the credibilities of workers and only use
workers when they have reached a desired threshold. (Note, however, that it is not
clear that this particular scheme will work better than our current scheme, since it
seems that it would take longer and would be more prone to non-Bernoulli saboteurs
who wait until they get enough credibility to start performing sabotage. It may still
be useful to look into this, though, in case other ideas similar to it prove to be useful.)

• Incorporating other forms of spot-checking. Another way to do spot-checking is
to check a randomly selected fraction h of all results instead of randomly checking
entire results with a probability q. This was suggested in Sect. 3.5.2, and is also related
to the technique in [99] as described in Sects. 3.5.2 and 6.2.1. It would be useful to
analyze the expected behavior of this form of spot-checking, and to come up with
appropriate credibility metrics for this case. Intuitively, we suspect that in this case,
the analysis and the credibility metrics would be very similar, with h replacing q and
hk replacing k (since k is now equal to the total number of works done by a worker
so far). However, we still need to do this analysis more rigorously.

• Handling saboteurs that are not Bernoulli processes but who somehow change
their sabotage rates in time. For example, if a saboteur somehow knows in advance
the total number of work objects, n, that it will be given in batch, then intuitively, it
might be able to increase the error rate by increasing its sabotage rate depending on
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how many work objects are left for it to do in a batch. For example, it can set the
sabotage rate, s, equal to ŝ∗scbl or s∗scnb (from Eqs. 6.6 and 6.11, respectively) using the
remaining number of work objects in place of n (such that for example, in the last
pieces of work, it just always gives bad answers since it knows that it cannot hurt
it anymore to get caught). With credibility-based fault-tolerance, the damage that a
saboteur can cause by doing this might be even bigger since the master would trust
it more during the later stages, which is exactly when the saboteur is increasing its
sabotage rate.

This is an interesting problem for future research. One possible solution is for the
master to likewise increase its spot-check rate q as the end of the batch approaches,
in order to cancel the saboteurs’ increasing s. (In fact, the master can do this more
easily than saboteurs since the master actually knows the number of remaining work
objects in the batch better than saboteurs do.) Whether or not we employ a counter-
measure like this, however, we can still make credibility-based fault-tolerance work
by computing a new dubiosity and credibility for each worker, possibly based on the
number of objects remaining in the batch. As noted in Sect. 6.4.2, we can also ad-
just the credibility of results themselves depending on their age and the relative time
within the batch that they were done. Finally, for even more security, we can also put
a limit to the credibility of a worker by putting a limit, kmax, to the value that k can
take (this is equivalent to only respecting the last kmax spot-checks that a worker has
passed). This may make the necessary redundancy slightly larger, but the increase
may be an acceptable price to pay for more security. (We can get a hint of how much
larger the redundancy would be by looking at the difference between the slowdowns
in the first and last batches in Figs. 6-15, 6-20, and 6-23 in Sect. 6.5.2.)

For better performance, we may vary the bounds on k depending on how much we
intrinsically trust the worker – e.g., if we have verifiable and hard-to-forge identity
and contact information from a worker, then we can give it a higher k bound and
possibly also a higher initial credibility (i.e., a lower assumed f in its credibility).
Random volunteers who do not give verifiable identity information will still be al-
lowed to volunteer but would have lower k bounds and higher assumed f in their
credibilities.

In light of these, and potentially many other, interesting research questions, one of the
most significant contributions of this chapter is the generality of the credibility threshold
principle. That is, credibility-based fault-tolerance is not limited to just using voting or
spot-checking as described here, or to making the assumptions we made here, but can be
used with other mechanisms and be adapted to other assumptions as well as long as we
can derive the net effect of new assumptions or mechanisms on the conditional probabili-
ties of results being correct.
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Conclusion

7.1 Summary

In this thesis, we have aimed to paint a big picture of volunteer computing’s potentials
not only by presenting its many potential forms and applications, but also by presenting
new ways of addressing several technical challenges that need to be overcome in realizing
these potentials.

In Chap. 2, we began by showing how the ideas behind volunteer computing apply
beyond true volunteer computing systems, and can be used in other forms of volunteer
computing as well, including private and collaborative networks, commercial systems,
and NOIAs. At the same time, we also showed that realizing these potentials requires
addressing new research challenges, particularly in the areas of accessibility, applicability,
reliability, and economic issues. In the rest of the thesis, we focused on the first three of
these, showing concrete ways of addressing them.

In Chap. 3, we addressed the issue of accessibility by proposing the use of web-based
volunteer computing, and developing the Bayanihan system to demonstrate its benefits.
Through Bayanihan, we showed how we can allow users to volunteer their machines need-
ing nothing but a web browser, and also showed how doing so not only enables us to form
parallel computing networks much faster than possible with more traditional systems, but
also enables us to reach users who have previously been unable or unwilling to volunteer.
These include such as users who are unwilling to go through the hassle and security risks
of installing and uninstalling application software on their machines, and users whose
machines and operating systems simply do not allow them to install software on their
machines.

At the same time, we also addressed the issue of applicability by showing how us-
ing a platform-independent and object-oriented language such as Java can make develop-
ing volunteer computing systems easier for programmers and researchers as well. Using
a highly modular object-oriented framework design, we successfully implemented sev-
eral APIs and application frameworks that enable programmers to write a wide variety of
applications. Furthermore, we also successfully developed and tested a number of tech-
niques for addressing the various technical issues in volunteer computing, including eager
scheduling for adaptive parallelism, voting and spot-checking for reliability, and volunteer
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servers for scalability.
In Chap. 4, we used Bayanihan’s runtime system and APIs to explore several classes of

master-worker applications, whose coarse-grain and embarassingly parallel nature make
them appropriate for volunteer computing systems. Here, we showed that volunteer com-
puting has many other potential applications other than the ad hoc and esoteric ones for
which they have been most well known so far. We also demonstrated the real practicality
of volunteer computing by showing how it made our research on fault-tolerance mecha-
nisms possible.

In Chap. 5, we took the applicability of volunteer computing even further by showing
how applications need not follow the master-worker style or be embarassingly parallel in
order to be implemented on a volunteer computing system. By presenting the Bayanihan
BSP programming interface, we showed how it is possible to write message-passing style
applications on top of master-worker style volunteer computing systems, and thus expand
the range of possible volunteer computing applications even further.

Finally, in Chap. 6, we presented new ideas and results on the largely unstudied prob-
lem of achieving reliability despite the presence of malicious volunteers. In addition to
discussing general approaches such as choosing naturally fault-tolerant or verifiable com-
putations, using authentication, encryption, and obfuscation, and using randomization
and redundancy, we also presented and developed specific techniques such as voting and
spot-checking. One of our most promising results is the idea of credibility-based fault-
tolerance, which, in addition to allowing us to achieve our desired error rates in a small
fraction of the time it would have taken traditional voting techniques, also promises to be
adaptable for use with other techniques, or in other situations with different assumptions.

7.2 Future Work

Although we presented many new ideas and techniques in this thesis, these respresent
only the beginning of a vast space of possible future research in volunteer computing.
Future work that we can forsee at this point include:

• Improving and refining the ideas and techniques presented here. At the end of
each chapter, we mention several open questions and suggestions. We can continue
our research by examining these.

• Applying the ideas here to existing systems. Most of the ideas presented here, in-
cluding Bayanihan BSP and our fault-tolerance mechanisms apply to master-worker
systems. Since most volunteer computing systems today already support master-
worker systems, applying these techniques to other systems should be straightfor-
ward. Furthermore, we may also be able to merge these ideas with other ideas im-
plemented by other systems such as Javelin’s scalability techniques and support for
branch-and-bound algorithms [105], Charlotte’s distributed shared memory system
[12], and the market mechanisms found in other projects [24, 88, 22, 97].

• Developing mechanisms for better scalability. Currently, Bayanihan uses a star
topology, and is thus not fully scalable. Many other systems today such as
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SETI@home also have basically star topologies. To maximize the benefits of volun-
teer computing, it would be useful to develop techniques for better scalability. Our
preliminary experiments using volunteer servers and communicationally parallel
applications demonstrate some promising possibilities, and can provide a good start-
ing point for further research. Other approaches we can look into include Javelin’s
scalability mechanisms [104, 106], and peer-to-peer networks inspired by Napster
and Gnutella. The latter includes Entropia, and a growing number of new projects
such as those in the Intel [74] peer-to-peer working groups, and others featured in
the O’Reilly’s P2P web site [112].

• Addressing economic issues and developing commercial and market-based sys-
tems. In this thesis, we have mostly not the discussed the economic issues involved
in commercial and market-based systems, and have focused on lower-level technical
concerns. Now that we have addressed the latter, it is time not only to apply our
results to commercial systems, but also to start focusing on the economic issues and
developing mechanisms for addressing these too. In doing so, we should remember
that dealing with the economic issues does not only mean developing mechanisms
for payment, but also considering hidden costs as described in Chap. 2.

• Developing the idea of NOIAs. Many of the ideas we have presented here are
already being (independently) implemented by many other research groups and
even commercial companies. One particularly promising idea that no one has im-
plemented yet or even studied in depth, however, is that of NOIAs (networks-of-
information-appliances), which we proposed in Chap. 2. As commercial volunteer
computing systems start becoming more commonplace and popular, NOIAs seem
to be the obvious next step. Thus, it would be very interesting and fruitful to start
developing technology for NOIAs now. In addition to finding ways of extending the
technology already available in today’s volunteer computing systems, it may also be
helpful to look into new emerging ideas, such as amorphous computing [2], that can be
relevant to such systems.

Finally, it would also be fruitful to start considering the social issues involved in volun-
teer computing. As sharing one’s idle computer time becomes easier and even financially
rewarding, more and more people will start volunteering their machines, and more and
more companies, organizations, and individuals, would start using, and even depending,
on the processing power provided by these volunteers. This opens up a whole new world
of possibilities, not only technical or economic but social as well.

7.3 Final Words

In this electronic age, it may be hard to find people still carrying their neighbors’ houses on
long bamboo poles – even in the rural villages of the Philippines. But in the global village
that the Internet has become, the bayanihan spirit can live on through volunteer computing.
It is our hope that the ideas we have presented here can help form a framework that, much
like the bamboo framework of old, will allow people around the world to work together
as one, and accomplish the seemingly impossible.
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Appendix A

Sample Code

This appendix contains sample code for three applications: brute-force factoring (de-
scribed in Sects. 3.4.2 and 4.2.1), computing π through Monte Carlo methods (described
in Sect. 4.6.3), and a sample program using the fault-tolerance simulator (described in
Sect. 4.6.4).

A.1 Brute-Force Factoring

A.1.1 Work Object
package bayanihan.apps.factor;

import bayanihan.util.*;
import bayanihan.mixer.*;
import bayanihan.api.mw.data.*;
import bayanihan.api.mw.work.*;

public class FactorWork extends BasicWork
{

// work specs
// note: these are accessed via package access by FactorResult
protected long target = 0;
protected long first = 0;
protected long last = 0;
// client-local handles
protected transient WorkEngineGUIIF weGUI;
// Constructors //

// this no-arg constructor is needed by HORB
protected FactorWork() {}

public FactorWork( long target, long first, long last )
{

this.target = target;
this.first = first;
this.last = last;

}
//////////////////////////////////////
// Interface implementation methods //
//////////////////////////////////////

////////////////////
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// Initialization //
////////////////////

/*
* WorkIF methods
*/

/**
* Get a handle to the WorkEngineGUI from the Engine, so
* we can report progress and results to local user.
* This method is called by Engine when work is received.
*/

public void init( MixoutIF engine, Params params )
{

super.init( engine, params );

// get a handle to the WorkEngineGUI from the Engine
this.weGUI = (WorkEngineGUIIF)engine.getIF( WorkEngineGUIIF.class );

}

/////////////////////////////
// Public Instance methods //
/////////////////////////////

/*
* WorkIF methods
*/

/**
* Finds factors of target between first and last (inclusive),
* and returns this in a FactorResult object.
*/

public Object doWork()
{

long curnum;
long runLength = ( last - first + 1 ) / 5;
long runsleft = runLength;
FactorResult result = new FactorResult( this );

for ( curnum = first; curnum <= last; curnum++ )
{

if ( ( target % curnum ) == 0 )
{

// target is divisible by curnum,
// add factor pair to result and report it to
// the local engine GUI

long othernum = target / curnum;

Factoring f = new Factoring( target, curnum, othernum );

result.addFactoring( f );

if ( weGUI != null )
{

weGUI.showResult( f );
}

}

// have local engine GUI report progress every runLength tries

runsleft--;

if (runsleft == 0)
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{
runsleft = runLength;

if ( weGUI != null )
{

weGUI.showStatus( "checking " + curnum );
}

java.lang.Thread.yield();
}
else if (runsleft < 0)
{

runsleft = 0;
}

}

return result;
}

/**
* Returns the number of possible factors tried.
* This is used for measuring performance.
*/

public long getSize()
{

return ( last - first + 1 );
}

///////////////////////////////
// Overridden Object methods //
///////////////////////////////

public String toString()
{

return ( "[" + target + "," + first + "," + last + "]" );
}

}

A.1.2 Result and Related Objects

Factoring Object

package bayanihan.apps.factor;

/**
* A single result containing one factoring of the target.
*/

public class Factoring implements bayanihan.Serializable
{

protected long target, num, othernum;

protected Factoring() {}

public Factoring( long target, long num, long othernum )
{

this.target = target;
this.num = num;
this.othernum = othernum;

}

public String toString()
{

return ( target + ": [" + num + "," + othernum + "]" );
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}
}

Result Object

package bayanihan.apps.factor;

import java.util.*;

/**
* This Object, returned by doWork, contains several Factoring Objects
* consisting of the factorings of the target number within the
* Work object’s range.
*/

public class FactorResult implements bayanihan.Serializable
{

protected long target = 0;
protected long first = 0, last = 0;
protected Vector factorings = new Vector();

//////////////////
// Constructors //
//////////////////

protected FactorResult() {}

public FactorResult( long target, long first, long last )
{

this.target = target;
this.first = first;
this.last = last;

}

public FactorResult( FactorWork fWork )
{

this( fWork.target, fWork.first, fWork.last );
}
// Methods used by FactorWork //

public void addFactoring( Factoring f )
{

this.factorings.addElement( f );
}

public int size()
{

return this.factorings.size();
}

public Enumeration elements()
{

return this.factorings.elements();
}

public Factoring[] getFactorings()
{

Factoring[] fa = new Factoring[ this.size() ];
int i = 0;

for ( Enumeration e = this.elements(); e.hasMoreElements(); )
{

fa[i] = (Factoring)e.nextElement();
i++;
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}

return fa;
}

// toString() method //

public String toString()
{

return ( factorings.size() + " factors in [" +
+ first + "," + last + "] for " + target );

}
}

A.1.3 Config and Request Object

package bayanihan.apps.factor;
import bayanihan.util.*;

/**
* Used to request a new target; also used as a ResetMsg.
*/

public class FactorConfig implements
bayanihan.Serializable, Parameterizable

{
public static final String P_target = "target";
public static final String P_inc = "inc";

public long target;
public long inc;

protected FactorConfig() {}

public FactorConfig( long target, long inc )
{

this.target = target;
this.inc = inc;

}

public void parameterize( Params params )
{

long nTarget = 0;
long nInc = 0;

nTarget = params.getLong( P_target, this.target );
this.target = Util.checkRange( nTarget, 1, Long.MAX_VALUE,

this.target );

long targRoot = (long)Math.sqrt( this.target );

nInc = params.getLong( P_inc, this.inc );
this.inc = Util.checkRange( nInc, 1, targRoot, targRoot );

}

public String toString()
{

return ( "Target: " + target + ", inc: " + inc );
}

}
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A.1.4 Watcher GUI Object

package bayanihan.apps.factor;

import java.awt.*;
import java.util.Enumeration;

import bayanihan.util.*;
import bayanihan.ui.*;
import bayanihan.data.*;
import bayanihan.remote.*;
import bayanihan.fwk.*;
import bayanihan.api.mw.data.*;
import bayanihan.api.mw.watch.*;
import bayanihan.api.mw.request.*;
import bayanihan.api.mw.timed.*;

public class FactorWatchGUI extends BasicWatchGUI
{

public static final int FACTORS_LIST_HEIGHT = 8;
public static final int WINDOW_SIZE = 7;

protected FactorConfig config = new FactorConfig( 0, 0 );
protected Panel statsPanel;
protected FactorConfigPanel configPanel;
protected FactorResultsPanel resPanel;

//////////////////
// Constructors //
//////////////////

public FactorWatchGUI()
{
}

////////////////////
// Initialization //
////////////////////

/*
* Parameterizable
*/

public void parameterize( Params params )
{

super.parameterize( params );
}

public void init()
{

this.setTitle( "Factor Watcher connected to " + this.serverHostName );
this.setLayout( new BorderLayout() );

this.statsPanel = this._createStatusPanel();
this.add( "North", this.statsPanel );

this.add( "Center", this._createFactorPanel() );

this.pack();
repaint();

}
public Panel _createFactorPanel()
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{
this.configPanel = new FactorConfigPanel();
this.resPanel = new FactorResultsPanel();
return GUIUtil.mergeNC( this.configPanel,

this.resPanel );
}

//////////////////////////////////////
// Interface implementation methods //
//////////////////////////////////////

/**
* Hook: draw core object; subclasses should call super
* at the <em>end</em> if msgCore is of unknown type
*/

protected void _drawWatchMsgCore( MsgIF watchMsg, Object msgCore )
{

if ( msgCore instanceof FactorResult ) // result msg
{

this.drawFactorResult( watchMsg, (FactorResult)msgCore );
}
else if ( msgCore instanceof FactorConfig ) // reset msg
{

this.reset( (FactorConfig)msgCore );
}
else super._drawWatchMsgCore( watchMsg, msgCore );

}

/**
*/

protected void drawFactorResult( MsgIF watchMsg, FactorResult res )
{

// check for SolverWatchMsg

long solver = SolverWatchMsg.UNKNOWN_PID;

SolverWatchMsg swmsg =
(SolverWatchMsg)DataUtil.getIF( watchMsg, SolverWatchMsg.class );

if ( swmsg != null )
{

solver = swmsg.getSolverID();
}

this.resPanel.drawFactorResult( res );
}

///////////////////
// Other methods //
///////////////////

public synchronized void reset( FactorConfig fc )
{

Trace.t( 3, "Resetting ..." );
this.config = fc;
this.configPanel.updateConfigPanel( this.config );
this.resPanel.reset();
this.repaint();

}

protected void submitConfigRequest()
{
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Trace.t( 3, "Making request ", this.config );
this.makeRequest( this.config );

}

///////////////////
// Inner Classes //
///////////////////

public class FactorConfigPanel extends Panel
{

protected Button submitButton;
protected NamedTextField targetTF, incTF;

//////////////////
// Constructors //
//////////////////

public FactorConfigPanel()
{

this.init();
}

//////////////////////
// Accessor methods //
//////////////////////

////////////////////
// Initialization //
////////////////////

public void init()
{

this.setLayout( new BorderLayout() );
this.add( "North", this._createConfigPanel() );

this.submitButton = new Button("Submit Request");
this.add( "Center", GUIUtil.mergeNC( this.submitButton, null ) );

}

protected Panel _createConfigPanel()
{

Panel cPanel = new Panel();

cPanel.setLayout( new GridLayout( 2, 1 ));

cPanel.add( this.targetTF = new NamedTextField( "Target:", 40 ) );
cPanel.add( this.incTF = new NamedTextField( "inc:", 20 ) );

return cPanel;
}

////////////////////
// Event-handling //
////////////////////

public boolean action( Event e, Object arg )
{

if ( e.target == this.submitButton )
{

this.readConfigValues( FactorWatchGUI.this.config );
FactorWatchGUI.this.submitConfigRequest();
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}
return false;

}

///////////////////
// Other methods //
///////////////////

/**
* Reads configvalues from fields and puts them in
* the parameter config.
*/

public void readConfigValues( FactorConfig fc )
{

long nTarget = 0;
long nInc = 0;

nTarget = Util.parseLong( targetTF.getText(), fc.target );
fc.target = Util.checkRange( nTarget, 1, Long.MAX_VALUE,

fc.target );

long targRoot = (long)Math.sqrt( fc.target );

nInc = Util.parseLong( incTF.getText(), fc.inc );
fc.inc = Util.checkRange( nInc, 1, targRoot, targRoot );

}

/**
* updates the TextFields in the GUI which show the range
*/

public void updateConfigPanel( FactorConfig fc )
{

this.targetTF.setText( String.valueOf( fc.target ) );
this.incTF.setText( String.valueOf( fc.inc ) );

}
}

public class FactorResultsPanel extends Panel
{

protected long count;
protected NamedLabel countLabel;
protected List factorsList;

//////////////////
// Constructors //
//////////////////

public FactorResultsPanel()
{

this.init();
}

////////////////////
// Initialization //
////////////////////

public void init()
{

this.setLayout( new BorderLayout() );
this.countLabel = new NamedLabel( "Factor pairs: ", 20 );
this.add( "North", countLabel );
this.factorsList = new List( FACTORS_LIST_HEIGHT, false );
this.add( "Center", factorsList );
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}

///////////////////
// Other methods //
///////////////////

public void reset()
{

this.count = 0;
this.countLabel.setText( String.valueOf( this.count ) );
this.factorsList.clear();

}

public void drawFactorResult( FactorResult res )
{

this.count += res.size();

for ( Enumeration e = res.elements(); e.hasMoreElements(); )
{

Factoring f = (Factoring)e.nextElement();
this.factorsList.addItem( f.toString() );

}
this.countLabel.setText( String.valueOf( this.count ) );

}
}

}

A.1.5 Program Object (Passive Style)
package bayanihan.apps.factor;
import java.util.Enumeration;
import bayanihan.util.*;
import bayanihan.mixer.*;
import bayanihan.remote.*;
import bayanihan.api.mw.*;
import bayanihan.api.mw.program.*;
import bayanihan.api.mw.data.*;
import bayanihan.api.mw.work.*;
import bayanihan.api.mw.watch.*;
import bayanihan.api.mw.request.*;
import bayanihan.api.mw.timed.*;

public class FactorProg extends BasicMWProgram
{

// default values

public static final long DIGITS_17 = 12345678901234567L;
public static final long DEF_TARGET = DIGITS_17;
public static final long DEF_INC = 1000000L;

protected FactorConfig config = new FactorConfig( DEF_TARGET,
DEF_INC );

////////////////////
// Initialization //
////////////////////

/**
* Allows FactorConfig object to be parameterized through command-line
* or .prj file.
*/

public void parameterize( Params params )
{
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super.parameterize( params );

Params.parameterize( this.config, params );
}

/**
* Specifies default watcher GUI class
*/

public Object getDefault( String key, Object defValue )
{

if ( key.equals( BasicMWProj.P_watchGUIClassName ) )
{

// use FactorWatchGUI

return FactorWatchGUI.class.getName();
} else
{

return defValue;
}

}

//////////////////////////////////////
// Interface implementation methods //
//////////////////////////////////////

//
// MWProgramIF methods
//

public void startProgram()
{

this._createNewBatch();
}

/**
* Posts WatchMsg when a result is accepted
* from a worker. This allows us to
*/

public void resultFinalized( WorkEntryIF workEntry,
ResultMsgIF resMsg )

{
long workID = workEntry.getWorkID();

// we get final result from workEntry (after voting and all)
// and then post a WatchMsg in watch pool for watchers
watchPool.postWatchMsg( new BasicResultWatchMsg( workEntry ) );

}
/**

* This is called when all the work objects in the batch are done;
* in this case, we increment the target of the current config.
*/

public synchronized void allDone()
{

// report allDone to log File and print results to log File

Trace.log( 1, "FactorProg.allDone() for target ",
this.config, true );

logResults();

// create a new batch factoring the *next* number

this.config.target++;
this._createNewBatch();
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}

//////////////////////////////
// Request Handling methods //
//////////////////////////////

// RequestHandlerIF
public synchronized void handleRequest( AdvocSLIF advoc, Object request )
{

Trace.t( 2, "Request received from advoc ", advoc, ": ", request );
if ( request instanceof FactorConfig )
{

this._reset( (FactorConfig)request );
}

}

/////////////////////////
// convenience methods //
/////////////////////////
/**

* Changes target config and then creates and starts new batch.
*/

protected void _reset( FactorConfig req )
{

// make sure workPool is not distributing work
// before changing this.config
this.batchCtrl.setIdle( true );

this.config = req;
this._createNewBatch();

}
/**

* Called in _reset, startProgram, and allDone
* Puts new work in work pool based on this.config,
* and starts batch.
*/

protected void _createNewBatch()
{

// clear work pool and
// post a BasicWatchMsg with the current config to tell client’s
// watcherGUI to reset with a new config

this._clearForNewBatch( new BasicWatchMsg( this.config ) );

this.createWork( this.config );

this._startNewBatch();
}

/**
*
*/

protected void createWork( FactorConfig cfg )
{

long first, last, targroot;
long numWork = 0;

targroot = (long)Math.sqrt( cfg.target );

Trace.log( 1, "Searching for factors from 1 to " + targroot +
" in blocks of " + cfg.inc + ".", true );

first = 1;
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do
{

last = first + ( cfg.inc - 1 );

if ( last > targroot )
{

last = targroot;
}

FactorWork w = new FactorWork( cfg.target, first, last );

WorkEntryIF workEntry = this._addWork( w );

numWork++;

first = last + 1;
} while ( first <= targroot );

}

protected void logResults()
{

Trace.log( 1, "Results of factoring " + config.target, true );

// _processAllResults is a convenience method that
// goes through all the final results in the work pool
// and calls processResult on the supplied WorkEntryProcessor
// object (here defined as an anonymous inner class)

this._processAllResults(
new BasicWorkEntryProcessor()
{

public void processResult( Object result )
{

if ( result instanceof FactorResult )
{

Factoring[] factorings =
((FactorResult)result).getFactorings();

for ( int i = 0; i < factorings.length; i++ )
{

Trace.log( 1, "", factorings[i], true );
}

}
}

}
);

}
}

A.1.6 Program Object (Active Style)
package bayanihan.apps.factor;
import java.util.Enumeration;
import bayanihan.util.*;
import bayanihan.mixer.*;
import bayanihan.remote.*;
import bayanihan.api.mw.*;
import bayanihan.api.mw.program.*;
import bayanihan.api.mw.data.*;
import bayanihan.api.mw.work.*;
import bayanihan.api.mw.watch.*;
import bayanihan.api.mw.request.*;
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import bayanihan.api.mw.timed.*;

public class ActiveFactorProg extends ActiveMWProgram
{

// default values

public static final long DIGITS_17 = 12345678901234567L;
public static final long DEF_TARGET = DIGITS_17;
public static final long DEF_INC = 1000000L;

protected FactorConfig config = new FactorConfig( DEF_TARGET,
DEF_INC );

////////////////////
// Initialization //
////////////////////

/**
* Allows FactorConfig object to be parameterized through command-line
* or .prj file.
*/

public void parameterize( Params params )
{

super.parameterize( params );

Params.parameterize( this.config, params );
}

/**
* Specifies default watcher GUI class
*/

public Object getDefault( String key, Object defValue )
{

if ( key.equals( BasicMWProj.P_watchGUIClassName ) )
{

// use FactorWatchGUI

return FactorWatchGUI.class.getName();
} else
{

return defValue;
}

}

//////////////////////////////////////
// Interface implementation methods //
//////////////////////////////////////

//
// run() method
//

public void run()
{

// set up new ResultListener as an anonymous inner class
setupResultListener();

// the real loop
while ( true )
{

// do parallel step
FactorConfig request = doParallelFactor( this.config );
// print results to log file
logResults();
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// check if parallel step was interrupted by a request
if ( request != null )
{

// if there is a request, print note in log file,
// then change the config

Trace.log( 1, "Note: computation was interrupted. " +
"Factors may be incomplete", true );

this.config = request;
} else
{

// if there is no request, just increment the current target
this.config.target++;

}
}

}

//////////////////////
// Parallel methods //
//////////////////////

/**
* Finds factors according to FactorConfig until
* request is made, or all done.
* Returns request if any, or returns null if all done
* without any request. Note that processing
* is not done here but has to be done in resultListener
* or in run().
*/

public FactorConfig doParallelFactor( FactorConfig cfg )
{

//--- set-up parallel step ---//

Trace.log( 1, "Creating new batch: ", cfg, true );

// clear work pool and
// post a BasicWatchMsg with the current config to tell client’s
// watcherGUI to reset with a new config
this._clearForNewBatch( new BasicWatchMsg( this.config ) );
// create work
createWork( cfg );

//--- start parallel step ---//

_startNewBatch();

//--- wait for request or allDone ---//
Object request = null;
FactorConfig fcRequest = null;

do
{

// waits for request or allDone.
// Returns null if allDone without request
request = this._waitForRequest();
if ( request == null )
{

Trace.t( 1, "all done. No request received" );
}
else if ( request instanceof FactorConfig )
{

Trace.t( 1, "stopping batch" );
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// stops the batch and sets
// this.waiting for allDone to allow us to fall
// through below
_stopBatch();
fcRequest = (FactorConfig)request;

}
else
{

Trace.err( "unknown Request type: " + request );
}

} while ( this.waitingForAllDone );

//--- end parallel step ---//
// at this point, either all done (in which case, fcRequest would be null)
// or batch stopped due to request

return fcRequest;
}

/////////////////////////
// convenience methods //
/////////////////////////

protected void setupResultListener()
{

// set up new ResultListener as an anonymous inner class
this.setResultListener(

new BasicResultListener()
{

public void resultFinalized( WorkEntryIF workEntry,
ResultMsgIF resMsg )

{
long workID = workEntry.getWorkID();

// we get final result from workEntry (after voting and all)
// and then post a WatchMsg in watch pool for watchers
_postWatchMsg( new BasicResultWatchMsg( workEntry ) );

}
}

);
}

/**
* Fills work pool with FactorWork objects according to the
* target and inc values in the FactorConfig parameter.
*/

protected void createWork( FactorConfig cfg )
{

long first, last, targroot;
long numWork = 0;

targroot = (long)Math.sqrt( cfg.target );

Trace.log( 1, "Searching for factors from 1 to " + targroot +
" in blocks of " + cfg.inc + ".", true );

first = 1;

do
{

last = first + ( cfg.inc - 1 );

if ( last > targroot )
{
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last = targroot;
}

FactorWork w = new FactorWork( cfg.target, first, last );

WorkEntryIF workEntry = this._addWork( w );

numWork++;

first = last + 1;
} while ( first <= targroot );

}

protected void logResults()
{

Trace.log( 1, "Results of factoring " + config.target, true );

// _processAllResults is a convenience method that
// goes through all the final results in the work pool
// and calls processResult on the supplied WorkEntryProcessor
// object (here defined as an anonymous inner class)

this._processAllResults(
new BasicWorkEntryProcessor()
{

public void processResult( Object result )
{

if ( result instanceof FactorResult )
{

Factoring[] factorings =
((FactorResult)result).getFactorings();

for ( int i = 0; i < factorings.length; i++ )
{

Trace.log( 1, "", factorings[i], true );
}

}
}

}
);

}
}

A.2 Computing Pi through Monte Carlo Methods

A.2.1 Work Object
package bayanihan.apps.mcpi;

import bayanihan.api.mc.*;

/**
* Monte-Carlo code for computing Pi
*/

public class PiWork extends MCSingleRun
{

// members
protected int iters;

//////////////////
// Constructors //
//////////////////
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/**
* Needed for HORB compatibility.
* Defaults to iters = 1;
*/

public PiWork()
{

this.iters = 1;
}
////////////////////
// Initialization //
////////////////////

public void setConfig( Object config )
{

if ( config instanceof Integer )
{

this.iters = ((Integer)config).intValue();
}

}

/////////////////////////////////
// Overridden abstract methods //
/////////////////////////////////

/**
* Does work and returns an Object as the result.
* (The Engine takes care of wrapping the Object in a ResultPacket.)
*/

public Object doWork()
{

int count = 0;
PiResult result = null;
int updateIters = this.iters / 5;

for( int i = 0; i < this.iters; i++ )
{

if ( ( i % updateIters ) == 0 )
{

this.showStatus( i + "/" + iters + " iterations done." );
}

double x = this.rng.nextDouble()*2 - 1; // random from -1.0 to 1.0
double y = this.rng.nextDouble()*2 - 1; // random from -1.0 to 1.0

if ( ( x*x + y*y ) <= 1.0 )
{

count++;
}

}

result = new PiResult( this.iters, count );

return result;
}

/**
* Returns number of iterations.
*/

public long getSize()
{

return this.iters;
}
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///////////////////////
// toString() method //
///////////////////////

public String toString()
{

return "PiWork: seed = 0x" + Long.toHexString( this.rng.getSeed() ) +
", iters = " + this.iters;

}
}

A.2.2 Result Object
package bayanihan.apps.mcpi;

/**
* Result object for Monte-Carlo Pi program
*/

public class PiResult implements bayanihan.Serializable
{

protected int iters = 0;
protected int count = 0;

/**
* needed for HORB compatibility
*/

public PiResult()
{
}

public PiResult( int iters, int count )
{

this.set( iters, count );
}

public void set( int iters, int count )
{

this.iters = iters;
this.count = count;

}

public int getIters() { return this.iters; }

public int getCount() { return this.count; }

public double getRatio() { return (double)count / (double) iters; }

public double getPi() { return this.getRatio() * 4; }

public String toString()
{

return "Pi = ("+count+"/"+iters+")*4 = "+getPi();
}

}

A.2.3 Statistics Collector Object
package bayanihan.apps.mcpi;

import bayanihan.api.mc.*;

public class PiStat extends MCCollector implements bayanihan.Serializable
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{
protected DStat pi = new DStat();

//////////////////////
// Accessor methods //
//////////////////////

public DStat getPiDStat()
{

return this.pi;
}

public double getPi()
{

return this.pi.getMean();
}

/////////////////////////////////////
// Abstract method implementations //
/////////////////////////////////////

public void reset()
{

this.pi.reset();
}

/**
* Adds iters and count from PiResult
*/

public void processResult( Object result )
{

if ( result instanceof PiResult )
{

this.addSample( ((PiResult)result) );
}

}

///////////////////////
// addSample methods //
///////////////////////

public void addSample( PiStat piStat )
{

this.pi.addDStat( piStat.getPiDStat() );
}

public void addSample( PiResult result )
{

this.pi.addSample( result.getPi() );
}

///////////////////////
// toString() method //
///////////////////////

public String toString()
{

return "Pi = " + pi.getMean() + " +/- " + pi.getMeanStdDev() + " std dev.";
}

public String fullStatString()
{

return "Pi = " + pi.fullStatString();
}
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}

A.2.4 Program Object
package bayanihan.apps.mcpi;

import bayanihan.util.*;
import bayanihan.api.mc.*;
public class PiProg extends ActiveMCProg
{

public static final String P_workSize = "workSize";

protected int workSize = 1000000;

protected long batch = 0;

protected PiStat overallPiStat;

public PiProg()
{

super();
}

////////////////////
// Initialization //
////////////////////

public void parameterize( Params params )
{

super.parameterize( params );

this.workSize = params.getInt( P_workSize, this.workSize );
}

//////////////////////////////////////
// Interface implementation methods //
//////////////////////////////////////

//////////////////
// run() method //
//////////////////

public void run()
{

this.batch = 0;
this.overallPiStat = new PiStat();
this.programStatus = this.overallPiStat;

Integer config = new Integer( this.workSize );

while ( true )
{

PiStat batchStat = new PiStat();

doBatch( PiWork.class, config, batchStat );

this.overallPiStat.addSample( batchStat );

Trace.log( 1, "Batch #" + this.batch + " done. ", true );
Trace.log( 1, "BatchStat: " + batchStat.fullStatString(), true );
Trace.log( 1, "Overall PiStat ", this.overallPiStat.fullStatString(),

true );
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this.batch++;
}

}
}

A.3 Fault-tolerance Simulator

A.3.1 Sample Program Object
package bayanihan.apps.ftsim;

import java.io.*;
import bayanihan.util.*;

/**
* This program performs a parametric analysis by
* scanning through various combinations of
* credibility threshold, faulty fraction (f),
* and sabotage rate (s).
*/

public class CredScanProgNB extends FTSimProg
{

//////////////////
// Constructors //
//////////////////

public CredScanProgNB()
{

super();

// this class specifies the simulator version
// which contains the formulas used for credibility
// in this case, this class uses the credibility
// metric for spot-checking without blacklisting

this.simRunClass = SimRunWorkCredNB.class;
}

////////////////////
// Initialization //
////////////////////

/**
* Read parameters from .prj file into this.config
*/

public void parameterize( Params params )
{

super.parameterize( params );

this.outFileName = "csNB";
}

//////////////////
// run() method //
//////////////////

public void run()
{

// create a text file with .txt extension
PrintStream out = this.createTextOutputFile( this.outFileName );
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// create a binary file with .dat extension
ObjectOutputStream oos = this.createObjectOutputFile( this.outFileName );

// the following are the parameter settings to try

double credArr[] = { 0.999999, 0.99999, 0.9999, 0.999, 0.99 };

double fArr[] = { 0.2, 0.1, 0.05, 0.01 };

double sArr[] = { 0.01, 0.02, 0.03, 0.05, 0.07, 0.09,
0.1, 0.12, 0.14, 0.16, 0.18,
0.20, 0.22, 0.25, 0.3, 0.35,
0.5, 0.65, 0.8, 1.0 };

// loop through different values of f

for ( int i = 0; i < fArr.length; i++ )
{

this.config.fractBad = fArr[i];
this.config.cF = fArr[i];

// loop through different values of credibility threshold
doCredScan( sArr, credArr, out, oos );

}

try
{

oos.close();
} catch ( IOException e )
{

Trace.log( 1, "ERROR closing oos: ", e, true );
}

out.close();
}

//////////////////////
// Parallel methods //
//////////////////////

protected void doCredScan( double[] sArr, double[] credArr,
PrintStream out, ObjectOutputStream oos )

{
// loop through different values of credibility threshold

for ( int c = 0; c < credArr.length; c++ )
{

this.config.cThresh = credArr[c];

// loop through different values of s
doSScan( sArr, out, oos );

}
}

protected void doSScan( double[] sArr,
PrintStream out, ObjectOutputStream oos )

{
// loop through different values of s

for ( int i = 0; i < sArr.length; i++ )
{

this.config.probSabotage = sArr[i];

SimRunResultCollector collector = new SimRunResultCollector( config );
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doBatch( this.simRunClass, this.config, this.numRuns, collector );

// write Serialized output
try
{

oos.writeObject( collector );
oos.flush();
// clear oos "memory" to save memory
oos.reset();

} catch ( IOException e )
{

Trace.log( 1, "ERROR writing to oos: ", e, true );
}

// write text output
if ( i == 0 )
{

out.println( this.tabbedHeaders( collector ) );
}
out.println( this.tabbedFullStatsString( collector ) );
out.flush();

Trace.log( 1, "Result: \n", collector, true );

System.gc();
}

}
}
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Encrypted Computation and
Obfuscation

This appendix contains the contents of an unpublished survey and critique paper [134]
that presents and discusses techniques for protecting executable code from malicious users
trying to reverse engineer or modify the code for their own purposes. As platform-
independent, easily decompilable, and mobile code platforms such as Java come into in-
creasingly widespread use, such techniques are becoming necessary not only to guard
against software piracy and the theft of intellectual property, but also to protect users of
mobile agents from attacks by malicious hosts trying to influence the agents’ behavior. In
the context of this thesis, such techniques would also be helpful in preventing computa-
tional sabotage, as described in Sects. 2.3.3 and 6.2.

In this paper, we discuss three main techniques – encrypted computation (also called
mobile cryptography) [127], obfuscation [30], and time-limited blackbox security [71]. We present
an overview and a critique of each technique, and conclude with some suggestions on
possible directions for future research.

B.1 Motivation

With the growing popularity of Java and other mobile code systems that allow executable
code to be automatically downloaded and executed on a user’s machine, much attention
and research has been focused on protecting users from malicious programs that seek to
steal data or do harm to the user’s machine. Unfortunately, however, not as much research
has been focused on the reverse problem – that of protecting the executable code from
attempts by malicious users to reverse engineer or modify the code for their own purposes.
This is not so surprising since in the past, reverse engineering from native binary code
has generally been a difficult (though not impossible) task. As platform-independent and
easily decompilable binary formats such as Java bytecode become more and more common
today, however, one can no longer ignore this problem.

In this paper, we provide a survey of techniques currently being developed to address
this problem. We discuss three main techniques – encrypted computation (also called mo-
bile cryptography) [127], obfuscation [30], and time-limited blackbox security [71]. We present
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Figure B-1: Programs can be attacked in hostile environments.

an overview and a critique of each technique, and conclude with some suggestions on
possible directions for future research.

B.2 Overview

B.2.1 The Problem

In most general-purpose computer systems today, the code and data of an executable pro-
gram are exposed to the execution environment, and can be read, disassembled, and mod-
ified by a determined hacker. As shown in Fig. B-1, this means that once a program owner
allows his or her program to run on an untrusted machine, there is usually nothing stop-
ping the owner of that machine from trying to spy on the program’s data, manipulate the
program’s behavior, or damage (sabotage) the program in some way.

The problem, therefore, is to find ways to protect programs from such hostile execu-
tion environments. Ideally, we would like to have blackbox security1 – programs must be
protected in such a way that a host executing a program it did not create:

1. cannot read, or at least cannot understand, the program’s code and data, and

2. cannot modify the program’s code and data.

That is, all that a host can do would be to feed the blackbox some input, run it, and get
some results.

B.2.2 Applications

An effective blackbox security scheme that would prevent malicious users from reading,
understanding, and modifying someone else’s programs would have many applications.

1The following definition is based on Hohl’s definition [71], but extends the idea from agents to programs
in general (not just agents), and allows code and data to be read as long as it is not understood.
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Protection of Intellectual Property. The hiding of trade secrets and proprietary algo-
rithms from competitive espionage has always been a concern in the software industry. In
recent years, the problem has been worsened by the growing popularity of Java [59] and
other software platforms that have an easily decompilable executable format. (For links
to some commercial and non-commercial Java decompilers, see [29].) A technique which
can somehow prevent others from understanding the decompiled Java code would thus
be very useful for hiding such trade secrets. It can also be used as an additional deterrent
to software piracy by using it to hide the workings of mechanisms for registration keys, trial
versions, software watermarks [32], etc.

Protection of Mobile Agents. As more and more people start using autonomous mobile
agents, it is becoming vital to find ways to protect these mobile agents from attacks by the
hosts on which they run [127, 71]. In an e-commerce application, for example, where an
agent may visit different vendors’ host machines while shopping for the best offer, there
are many ways in which a dishonest vendor may try to manipulate the agent into buying
from it [71]. If the malicious vendor can understand and modify the code, for example, he
can directly change the behavior of the agent to make it buy from him, regardless of better
offers from other vendors. If the vendor cannot change the code directly, but can read and
change the data, he can still manipulate the agent by changing the values of critical data,
such as the best price seen by the agent so far, in his favor. Worse, the vendor may be able
to steal secret information from the agent such as its private keys, digital signing functions,
and digital cash, and use these to make purchases and transactions at the agent’s owner’s
expense.

Market-based Volunteer Computing. Blackbox security would also be useful in market-
based volunteer computing, where a parallel computation is done by users offering use of
their machines’ spare cycles in exchange for compensation. In such cases, we need to
prevent dishonest users from trying to get paid without actually doing their work, and
from generating erroneous results intended to sabotage the entire parallel computation.

B.2.3 Possible Solutions

In the following sections, we will examine three different approaches to the problem of
protecting programs from hostile environments: encrypted computation, obfuscation, and
time-limited blackbox security. For each of these techniques, we will give an overview, a
critique of its strengths and weaknesses, and give some suggestions for future research.

B.3 Encrypted Computation

Encrypted computation seeks to provide true blackbox security by employing provably
secure cryptographic techniques to allow an untrusted host to perform useful computation
without understanding what it is computing.

Figure B-2 shows one form of encrypted computation. Here, Alice has a secret function
f that she wants to run on Bob’s machine using some input x provided by Bob. To prevent
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Figure B-2: Computing with encrypted functions (CEF).

Bob from understanding or modifying f , Alice encrypts f using her private key and an
encryption scheme E to obtain a program P (E(f)) for computing E(f) (step 1). She then
sends this program to Bob (step 2), who receives the program and runs it on his input x.
The program produces the encrypted result E(f(x)), which Bob sends back to Alice (step
3). Finally, Alice runs a decryption program P (E−1) on E(f(x)) to obtain the desired value
f(x) (step 4). In this way, Bob is able to do useful computation without learning either f
or f(x).

This example depicts what is sometimes known as computing with encrypted functions
(CEF) [128]. Here, f is encrypted, but x is known to Bob. CEF can also be extended to what
Sander and Tschudin call function hiding [129], where the value of f(x) is returned to Bob
after step 4 in Fig. B-2. Function hiding can be used to protect intellectual property from
theft and piracy. Suppose f is some proprietary algorithm Alice has developed for solving
a problem of interest to many people. With function hiding, Alice can sell (P (E(f))) and
let users run it on their own machines using their own input. The program would produce
encrypted results, which users can then ask Alice to decrypt. In this way, Alice can protect
her intellectual property (f ), and at the same time charge users for its use through a sort of
“pay-per-use” scheme.

Another form of encrypted computation is computing with encrypted data (CED), shown
in Fig. B-3. Here, Alice provides the input data x as well, but encrypts it so that Bob cannot
learn its value. (She may or may not allow Bob to understand f .) CED is useful in ap-
plications such as market-based parallel computing, where Alice would like to use Bob’s
computational power without allowing Bob to learn what Alice is doing. Note that CED
is can be seen as a special case of CEF if the function f can be redefined to include the data
x.

B.3.1 Basic Examples

As a simple example of encrypted computation, consider the case where f(x) is the func-
tion x + c. In this case, Alice can encrypt f by simply adding some random number r to
c to get the encrypted function E(f(x)) = x + c′, where c′ = c + r. She can then decrypt
the output by simply subtracting r from it. Since r can be any number, Bob cannot deduce
c from c′ and therefore cannot learn the original f . Neither can he manipulate the com-
putation to make it produce a specific output value since he does not know what number
Alice would subtract from his output. In this way, Alice is able to protect f from spying
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Figure B-3: Computing with encrypted data (CED).

and manipulation. Note however, that this scheme is not secure against sabotage. That is,
there is nothing preventing Bob from returning a random number to Alice instead of actu-
ally performing the computation. Also, this scheme is not efficient since it costs Alice more
computation to encrypt and decrpyt the data than to compute the function itself. Thus, it
would be cheaper for Alice to just ask Bob for x and compute the function herself.

A similar, but better example is outlined in [136], and shows CED applied to the dis-
crete logarithm problem. This algorithm is much more efficient, since the discrete loga-
rithm computation (which will be solved on Bob’s machine) is a hard problem, and is thus
likely to dwarf Alice’s encryption and decryption overhead. Moreover, Alice can easily
check the answer using exponentiation (which is much easier than solving for the discrete
logarithm), so the algorithm is safe from sabotage. (Note, that this example is slightly
different from the first example since it is doing CED, not CEF.)

B.3.2 Sander’s and Tschudin’s work

Recently, Sander and Tschudin, have proposed the application of encrypted computation
techniques to the problem of protecting mobile code from malicious hosts [128, 127], as
well as protecting intellectual property and secret functions in general [129]. So far, they
have developed techniques for the encrypted computation of polynomials. In this section,
we give an overview and critique of their techniques.

Polynomial Evaluation using Homomorphic Encryption Schemes

Sander and Tschudin show how encrypted polynomial evaluation can be done using ho-
momorphic encryption schemes.

An algebraically homomorphic encryption scheme E is one where there exists easily com-
putable operations PLUS and MULT which take encrypted inputs E(x) and E(y) and can
produce encrypted outputs E(x+y) and E(xy) respectively without having to decrypt and
learn x and y. With such a scheme, encrypted polynomial evaluation becomes easy – Alice
need only give Bob a program where all numerical values in the polynomial (i.e., the co-
efficients and the input data) are encrypted, and where addition is replaced by PLUS and
multiplication is replaced by MULT. Unfortunately, however, no one has yet discovered an
algebraically homomorphic encryption scheme.
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Sander and Tschudin note, though, that if Bob provides the input x, then Bob does
not need a MULT operation, but only a MIXEDMULT operation, which can compute
E(xy) using E(y) (from Alice), and x (from Bob), without revealing y or xy to Bob. Since
MIXEDMULT in turn can easily be implemented using O(log2 N) PLUS operations (by a
process similar to longhand binary multiplication), this means that all that is needed to
do encrypted polynomial evaluation (on integers, modulo some integer N whose factors
are small primes), is an additively homomorphic encryption scheme – a scheme which has a
PLUS, but not necessarily a MULT operation. Such schemes, unlike algebraically homo-
morphic schemes, are known to exist [15, 92], and thus make encrypted computation of
polynomials possible.

Composition-based approach

Sander and Tschudin also propose another way to perform encrypted computation using
function composition: suppose f is a rational function (the quotient of two polynomials),
and suppose that Alice can generate a random rational function s which is easily invertible.
Then, Alice can give Bob the function B = s ◦ f . When Bob returns y = B(x), Alice can
then retrieve f(x) by computing s−1(y). The trick here, of course, is to be able to generate
easily invertible rational functions s at random. Sander and Tschudin cite some known
techniques but note that these are not completely secure, and more research needs to be
done in this area.

One application of functional composition is in the implementation of undetachable sig-
natures. Undetachable signatures address the following problem: suppose Alice has a func-
tion f , which she wants Bob to perform on some input x from Bob, and a signing function
s, which she wants to run on Bob’s machine to sign the output f(x) for her. However, Alice
wants to keep s secret so that Bob cannot use it to sign other values (not produced by f ) –
and thus impersonate her. Using function composition as described above, Alice can give
Bob s◦f instead of s and ask Bob to run both f and s◦f on his input x to produce f(x) and
its signature. Since the decomposition of multivariate rational functions is a hard problem
in general, this would prevent Bob from discovering s and generating valid signatures for
arbitrary results.

Using Randomization and Redundancy

The encrypted computation techniques discussed so far are susceptible to some attacks.
For example, when used in function hiding, the homomorphic encryption techniques are
susceptible to coefficient attacks [129] that would allow Bob to decrypt the coefficients of f
by simply sending Alice the encrypted forms of the coefficients, as if they were the result
f(x). The composition scheme for undetachable signatures is prone to many attacks such
as left decomposition (Bob can determine s given both f and s◦f ), interpolation, and inversion
[127]. Sander and Tschudin propose solutions to these problems where the basic idea is to
use tuples in the functions, where some elements of the tuples are randomly generated by
Alice and kept secret from Bob. This randomized information prevents Bob from being
able to manipulate the computation to his advantage. It also prevents sabotage, since if
Bob randomly changes part of the computation, Alice would be able to detect it, since the
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“hidden checksum” or signature will not match the output. The cost, of course, is the
redundancy and inefficiency introduced by using tuples of random data.

B.3.3 Critique

Sander and Tschudin’s work is very interesting because it gives us hope of achieving true
blackbox security with theoretically provable strength. That is, unlike the obfuscation tech-
niques to be discussed below, the difficulty of breaking the security of encrypted compu-
tation techniques can be predicted formally based on information-theoretic limits or the
well-studied computational difficulty of certain mathematical problems. Unfortunately,
however, their work in its current state does not yet seem to be useful in real applications
for several reasons.

Limited Functionality. First of all, their approach is currently limited to the evaluation
of polynomials and rational functions. In fact, it is not clear that they can really handle
rational functions either since they note that they still need to come up with a good way
to find easily invertible rational functions. They note that others [1] have developed some
theoretical methods for the encrypted evaluation of boolean circuits in general, but that
these are very inefficient and require a lot of rounds of communication.

Poor Efficiency. Secondly, their techniques still seem to be too inefficent for practical use.
To be practical, the encryption and decryption overhead on Alice’s side should not be
greater than the cost of computing the non-encrypted function completely on Alice’s side.
Otherwise, it would be more efficient to just use the perfectly secure solution of simply
having Bob send Alice his input x and let Alice do all the computation.

Unfortunately, Sander and Tschudin do not provide a formal complexity analysis of
their techniques in order to quantify Alice’s overhead cost and prove that their techniques
are practical. Even if we assume that their techniques can be shown to be practical at least
asymptotically, however, there is a question of how big the constant factors are. Since
simple integer addition and multiplication can be done very quickly in today’s processors,
the cost of computing an integer polynomial is quite small, and only becomes significant
when dealing with very high-degree polynomials. Thus, it would be interesting to see how
large the polynomials have to be before their encrypted computation becomes practical.

The encryption overhead can be amortized away if the same encrypted polynomial
is used by Bob on several inputs. This may make encrypted computation more practi-
cal. Care must be taken, however, that Bob does not learn much from the values that the
encrypted function produces. Sander and Lipton propose an additively homomorphic en-
cryption scheme that claims to be safe in this respect [92]. In the case of function hiding,
though, where Alice decrypts f(x) and returns the value to Bob, no matter what encryp-
tion scheme is used, Bob can always completely interpolate f by simply asking for f(x) at
k + 1 points, where k is the degree of the polynomial. Thus, in this case, encrypted com-
putation is not practical if the polynomial has to be reused more than k times to make it
efficient.

Another source of inefficiency are the techniques needed for hidden checksums, and
undetachable signatures. First of all, the redundancy added by using randomized tuples
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increases the overhead on both Alice’s and Bob’s sides, as well as the total time it takes to
perform the computation. Secondly, the encryption schemes they currently use seem to be
very inefficient. The scheme described in the function hiding paper, for example, performs
the encryption one bit at a time, and thus seems very inefficient.

Impracticality for Function Hiding and Market-Based Computation. Although Sander
and Tschudin’s general idea of using function hiding for protecting intellectual property and
as a basis for “pay-per-use” computing is very interesting, their example using polynomial
evaluation does not seem to be a good one. As noted above, the encryption and decryption
overhead seems to be extremely high, such that the only way to make it practical would
be to re-use the polynomial many times. However, this would allow Bob to interpolate
f , since Bob receives the decrypted f(x) from Alice. Because of these problems, it seems
that it would be faster and safer for Alice to just perform the computation completely by
herself.

For similar reasons, Sander’s and Tschudin’s current scheme for encrypted polynomial
evaluation does not seem to be practical for market-based computation either. In addition
to the overhead on Alice’s side which can prevent us from getting any speedup at all from
parallelization, there is also the added cost of the PLUS and MIXEDMULT operations
compared to simple addition and multiplication, which, while still making parallelization
possible, would require a larger number of worker nodes to achieve the same performance.
To be fair, however, we should note that Sander and Tschudin did not consider market-
based computation as an application in their papers.

Summary of Critique. To summarize, in their current form, Sander’s and Tschudin’s
proposed encrypted computation techniques seem usable, if at all, only for applications
requiring the computation of polynomials on the host (Bob’s) side where Alice (the server)
would like to know the value of some secret rational function f(x) for some input x from
Bob, but does not care how long Bob takes to compute it. Applications where Alice would
like to achieve speedup, such as in market-based computation, seem unlikely to benefit
from these techniques due to the high overheads involved. Applications such as function
hiding, where Alice returns decrypted values to Bob need to be carefully analyzed to make
sure that: 1) the overhead is less than the cost of having Alice compute everything herself,
and 2) Bob cannot learn f or use Alice’s decryption “service” for his own purposes. Cur-
rently, polynomial evaluation does not seem to be a good example in this respect.

In the future, it would be interesting to see encrypted computation made more effi-
cient and extended to more versatile functions than polynomials and rational functions.
Meanwhile, it would also be helpful to do a more formal and comprehensive complex-
ity analysis of Sander’s and Tschudin’s techniques, as well as come up with real practical
applications of their techniques.

B.4 Obfuscation

Encrypted computation attempts to achieve blackbox security by using mathematically
based cryptographic techniques to generate a new encrypted function E(f) from a secret
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function f , to make it difficult for a malicious user to understand, manipulate, and sabo-
tage the computation of f . Another technique, called obfuscation, uses heuristic techniques
to modify the program for computing f by transforming it into a “messy” form that is very
hard to understand, but performs the same function as the original program. While the
security properties of obfuscation are not as easy to analyze formally as those of encrypted
computation, obfuscation has the advantage of being more generally applicable. That is,
while encrypted computation is currently limited to specific problems such as polynomial
evaluation, obfuscation automatically applies to any computation that can be expressed as
a program.

Obfuscation is an old technique that has been around since programmers first started
to worry about protecting their intellectual property from reverse engineering by competi-
tors. In 1992, Cohen studied the application of obfuscation towards protecting operating
systems from attacks by hackers or viruses [28]. (At around the same time, these same
techniques were actually being used already by virus writers themselves in polymorphic or
evolutionary computer viruses.) More recently, obfuscation has gained a lot of interest with
the advent of Java, whose bytecode binary executable format is very easy to decompile
back into its original source.

B.4.1 Obfuscation Transformations

In this light, Collberg, Thomborson, and Low have compiled a taxonomy of obfuscation
techniques [30], classifying obfuscation transformations into four general types: layout,
control, data, and preventative transformations. They further identify four main criteria that
can be used to measure the quality of an obfuscation transformation: potency, resiliency,
stealth, and cost. Potency refers to how much the transformation confuses a human reader,
while resiliency refers to how much it confuses an automatic deobfuscator. Stealth [31]
refers to how well the obfuscated code blends in with the rest of the program and thus
avoids detection and focused attack. Finally, cost can be measured in terms of increased
code size and execution time.

Layout Transformations

Layout transformations are transformations that change the way the code looks to a hu-
man reader. A simple example would be removing the source code formatting information
sometimes available from Java byte code. Another example is that of scrambling identifier
names to confuse a human reader. The latter is more potent than the former since identifier
names carry a lot of pragmatic information that would help human programmers under-
stand the code better. Many popular obfuscators today, such as Crema [152], depend on
layout transformations. In general, layout transformations are simple to apply and cost
very little in terms of added code size and execution time, but have relatively low potency,
since the structure of the code and data are still mostly preserved and can be analyzed and
eventually understood despite the change in layout.
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Control Transformations

Control transformations aim to obscure the control-flow of the original program. Examples
of control transformations include the following:

Computation Tranformations. These transformations change the apparent computation
being performed by the program. Examples include:

• inserting dead or irrelevant code,

• using more complicated but equivalent loop conditions,

• using language-breaking transformations that take advantage of constructs available
in the binary code but not at the source level (e.g., goto ’s in Java),

• removing library calls and programming idioms,

• implementing a virtual machine with its own instruction set and semantics,

• adding redundant operands, and

• converting a sequential program into a multithreaded one by using automatic paral-
lelization techniques or by creating dummy processes that do not perform anything
relevant.

To these we may add some techniques mentioned by Cohen, such as using different but
equivalent machine instructions, and using equivalent instruction sequences [28].

Aggregation Tranformations. These tranformations make code harder to understand by
breaking the abstraction barriers represented by procedures and other control structures.
Examples include:

• inlining subroutine calls and outlining sequences of statements (turning them into a
subroutine),

• interleaving methods,

• cloning methods, and

• loop transformations.

Ordering Tranformations. These transformations change the order of statements, blocks,
or methods, within the code, being careful to respect any data dependencies. These trans-
formations may have low potency, but have high and one-way resilience, since in most
cases, it is impossible for an automatic deobfuscator to restore the code ordering to its
original form. Code ordering transformations have also been proposed as a method for
software watermarking and fingerprinting software [35]. Specifically, the ordering of a pro-
gram’s code can be made into a unique identifier that can be used to track sources of
pirated software.



B.4. OBFUSCATION 185

Data Transformations

Data tranformations obscure the data structures used by the application. Examples include
the following:

Storage and Encoding Transformations. In many cases, there are “natural” ways to en-
code and store particular data items in a program. Storage and encoding transformations
obscure code by deviating from these and choosing unnatural and encodings for the pro-
gram’s data. Examples of these include:

• changing encoding of primitive data types,

• promoting variables from more specialized forms (e.g. a primitive type) to more
generalized ones (e.g., a class),

• splitting variables, and

• converting static to procedural data.

Aggregation Transformations. These tranformations change the way data items are
grouped together. Examples include:

• merging scalar variables,

• restructuring arrays, and

• modifying inheritance relations.

Ordering Transformations. These transformations randomize the order in which data is
stored in the program. These include

• randomizing the declarations of methods and instance variables within classes,

• randomizing the order of parameters within methods,

• using a mapping function to reorder data within arrays.

Preventative Transformations

Preventative transformations are different from control and data transformations in that
they do not aim to confuse a human reader, but to make automatic deobfuscation difficult.
Examples include the following:
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{ int v, a=5, b=6;
v = a + b; /* v is 11 here. */
if (b > 5) ... /* True */
if (random(1,5) < 0) ... /* False */
if ( ... ) ...

... code keeps a and b unchanged ...
if (b < 7) /* True */

a++;
v=(a > 5)?v=b*b:v=b /* v is 36 here */

}

Figure B-4: Examples of trivial opaque constructs.

Inherent Preventative Transformations. These transformations introduce problems that
are known to be hard to solve with known automatic deobfuscation techniques. Some
examples include:

• adding aliased formals to prevent program slicing,

• adding variable dependencies to prevent program slicing,

• adding bogus data dependencies,

• using opaque predicates with side-effects,

• making opaque predicates using difficult theorems (e.g., (x*x==(7*y*y-1)) is
known to be false for any integers x and y.

Targeted Preventative Transformations. These transformations target known specific
weaknesses in existing deobfuscation programs. For example the HoseMocha program
[87] inserts extra instructions after return statements in the source program. This has no
effect on the program execution, but causes the Mocha decompiler [153] to crash.

Opaque Variables and Predicates.

A key tool in implementing these transformations (and especially control transformations)
is the idea of opaque variables and opaque predicates. An opaque variable is one which has
some property that is known a priori to the obfuscator, but difficult for a deobfuscator to de-
duce. Similarly, an opaque predicate is one whose outcome is known ahead of time to the
obfuscator, but difficult for the deobfuscator to deduce. Figure B-4 shows some examples
of trivial opaque constructs (from [30]). (Here, we assume random(a,b) is a standard
library function whose semantics is known to both the obfuscator and the deobfuscator.)
These opaque constructs have low resilience since they can easily be broken by an auto-
matic deobfuscator using simple global static analysis.

Since most deobfuscators are likely to employ static analysis techniques, Collberg et al.
propose ways to generate opaque predicates based on problems that these techniques can-
not handle well. In particular, they present ways of taking advantage of the intractability
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of the static analysis of pointer-aliasing problems and multithreaded programs. They note
that by manipulating pointers seemingly randomly at many points in the program, for ex-
ample, we can generate opaque predicates of the form (p==q) or (p==null) , where p
and q are pointers (object references in Java), whose values would be very hard or im-
possible to determine statically. And, by employing concurrent threads with carefully
controlled, but seemingly random race conditions, we can complicate the process even
further.

Opaque variables and predicates can be used in many ways. Opaque predicates, which
can be used to direct the control-flow in a program, can be used for many control trans-
formations, such as inserting dead or irrelevant code. Opaque predicates and values can
also be used in data transformations to obscure the encoding techniques and mapping
functions used in the program.

Building an Obfuscator

Collberg et al. propose to build an obfuscator that will apply all these techniques repeat-
edly until the desired levels of potency, resilience, stealth, and cost, are achieved. Their
proposed obfuscator will not just blindly apply these techniques to the code arbitrarily,
but will attempt to analyze the code and determine appropriate transformations to ap-
ply to different parts of the code. For example, when obfuscating a part of the code with
tight loops, care will be taken to use low-cost transformations, and when obfuscating a
computational part without pointers, stealth would be maintained by employing opaque
predicates using numbers instead of those based on pointer-aliasing.

B.4.2 Critique

Collberg et al.’s taxonomy of obfuscation techniques is very impressive. They provide a
wide collection of techniques which, it seems, when used together and iteratively as they
propose, should make code very, very difficult to understand even with the help of auto-
matic deobfuscators. Furthermore, they identify some concrete formal metrics of program
complexity from software engineering research, such as program length, cyclomatic com-
plexity, nesting complexity, data flow complexity, fan-in/out complexity, etc. and propose
to measure them and use them in their obfuscation program [30]. This may be a significant
advantage in their approach over those of others such as Hohl, who so far only estimate
the effectivity of obfuscation techniques using informal analysis.

Measuring Effectivity. The effectivity of their proposed techniques, however, remains to
be seen. In general, the main weakness of obfuscation as an approach to blackbox security2

is the difficulty of measuring how much these transformations really make it harder for a
human user (fully armed with deobfuscation tools) to understand the obfuscated code.
That is, even if their software is able to produce code that is highly obscured according
to some formal metrics, it is still unclear whether or not these would really be effective in
protecting the code against a focused attack from determined hackers.

2Although Collberg et al., like Sander and Tschudin, do not use the term blackbox security, which was coined
by Hohl, their goals are very similar.
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For example, although using pointer aliasing for generating opaque predicates seems
like a very promising idea (and one of the significant and unique contributions of their
work), the specific techniques (based on graph structures) that they propose for generat-
ing these opaque predicates, may not be as effective against human attackers as they are
against automatic deobfuscators. A patient and determined human, for example, may be
able to notice that some pointers seem to be used in predicates a lot, follow the assignments
to these pointers, and learn their opaque values. Also, presumably, the statements in the
program that will manipulate the values of these pointers will be generated automatically
by an obfuscation program that will follow certain rules to guarantee the desired outcome.
If a human can somehow discover these rules, then he could generate a program that uses
pattern matching to break all opaque predicates using those rules.

Moreover, often, it is not necessary to discover all the rules and break all the opaque
predicates to successfully attack a piece of code. For example, the mechanisms used for
enabling or disabling features in trial versions of some software are sometimes based on a
few simple if statements or on setting a few specific data locations to particular values.
Thus, a determined hacker need not deobfuscate the whole program, but only needs to
learn enough to determine these crucial statements in the code and focus his attack on
them.3

Finally, even if the attacker cannot deobfuscate any part of the program at all, it is
still possible for him to sabotage the program by making random changes in the code or
data. Obfuscation alone would not protect against this. (Although it may be used to hide
redundant and randomized checksum or signature computations similar in spirit to those
used by Sander and Tschudin in encrypted computation).

In any case, it would be useful to look into these questions once Collberg et al. finish
Kava, the obfuscation program they are building based on their proposed techniques. Per-
haps the best way to test it would be to set up a challenge similar to the RSA decryption
challenges [126], where hackers will be invited to crack programs obfuscated by Kava, and
cause them to behave a certain way or produce a certain output. This would provide em-
pirical evidence to support their theories, and may even be useful to other researchers in
software engineering who are developing formal complexity metrics for software.

Parameterized Obfuscation. Another, somewhat orthogonal, direction for possible fu-
ture research is that of developing more concrete schemes for parameterized obfuscation.
Most current obfuscation programs have fixed strategies for obfuscating a particular piece
of code. Such programs would generate the same obfuscated code given the same input
program. What would be much more useful would be a program that is capable of gener-
ating many different versions of the obfuscated code depending on some parameter such
as an integer. Such programs would have many applications. As will be described in
the next section, they are necessary for time-limited blackbox security. They can also help
track software piracy: a software vendor can sell each new customer a different version
generated via parameterized obfuscation using a unique serial number. That way, if the
vendor discovers a pirated version, she can trace it to the original purchaser.

Collberg et al. mention this potential application of obfuscation in [30], and note

3Thanks to Diego Sevilla for pointing this out.
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that one can parameterize their obfuscator by choosing the random number seed in the
SelectTransform algorithm, which selects obfuscation transforms from a pool of appro-
priate transforms. Different seeds would then lead to different sequences of obfuscation
transforms being applied to the code. Since their obfuscator has a large number of trans-
forms to choose from, this technique should be able to produce a large variety of different
obfuscated versions of a program – much better than most current obfuscators which can
only produce one.

In addition to randomizing or parameterizing the selection of transforms, however, it
would also be useful to parameterize the workings of individual transformations as well.
For data transformations, for example, it should be possible to use an integer parameter
to generate different encoding maps or order-mapping functions. We can create similar
variations within control transformations as well.

As an example, consider one type of control transformation described by Cohen [28],
where parts of the original code are replaced by different, but equivalent instruction se-
quences – e.g., a sequence which performs the computation x=x+17 can be replaced by a
sequence which first performs x=x+20 , then x=x-3 . It is easy to see how such a scheme
can be parameterized using a single integer parameter p: if the original computation
was x=x+q for some constant q, then the transformation would generate x=x+p; x=x-r ,
where r is the (precomputed) constant p − q. We can parameterize this further by using
other integers to determine the type or order of the replacement operations. For example,
another parameter can be used to determine whether the subtraction of r is done before or
after the addition of p.

Of course, this is just a small example, and it is easy to extend the idea and imagine
countless ways to use parameters to generate many differents obfuscated versions of a pro-
gram. At the highest, most abstract level, such parameterization would be equivalent to
Collberg et al.’s idea of simply setting the random number seed in the SelectTransform
algorithm, since we can view each different version of the transformation (e.g., each p and
r in the example above) to be entirely different transformations. However, the difference
here is similar to the difference between implementing some function f(x) as a lookup table
indexed on x, or as a more compact algebraic formula based on x – given the same amount
of space, the latter can handle a much wider range of inputs, or in the case of an obfuscator,
it can produce a much wider variety of obfuscated programs.

It may be that Kava is already being implemented using such parameterized obfusca-
tion. In a paper on software watermarking [32], for example, Collberg et al. present some
techniques for encoding integers as graph structures. It is not hard to see that these and
similar techniques can also be used as a basis for parameterizable data obfuscation trans-
formations, so it seems safe to assume that they are already using them for this purpose.
In any case, though even if they are already using parameterized obfuscation in Kava, a
description of how different obfuscation transformations can be parameterized would be
a useful supplement to their already-comprehensive taxonomy.
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B.5 Time-limited Blackbox Security

Because they work on computer programs in general, obfuscation techniques are much
more widely applicable than encrypted computation techniques, which currently work
only for specific mathematical constructs such as polynomials. Thus, at present, obfusca-
tion seems to be the more promising path to achieving blackbox security. Unfortunately,
however, as we have seen, obfuscation is not as provably secure as encrypted computation.

Time-limited blackbox security, proposed by Hohl [71], recognizes this shortcoming of
obfuscation by restricting the definition of blackbox security defined in Sect. B.2.1 as fol-
lows: programs must be protected in such a way that a host executing a program it did not
create:

1. cannot read, or at least cannot understand, the program’s code and data, and

2. cannot modify the program’s code and data

3. – for a certain known time interval.

4. After this time interval, attacks are possible, but these attacks would have no effects.

Limiting the protection interval in this manner, allows us to use weaker security mecha-
nisms such as obfuscation in implementing time-limited blackbox security.

B.5.1 Overview

Hohl presents time-limited blackbox security primarily as a way to protect mobile agents
from malicious hosts. In this context, time-limited blackbox security can be achieved by
first “messing-up” the agent code and data to make it hard to analyze, and then attaching
an expiration date to indicate its protection interval.

Mess-up Algorithms. Hohl’s idea of “mess-up algorithms” is essentially the same as
obfuscation. In fact, most of the algorithms he proposes are already mentioned by Collberg
et al. (of whom Hohl was not aware). The main idea here is to make the agent’s code very
hard to understand such that it will take some time before someone can understand it and
be able to read it, manipulate it, or sabotage it. This minimum time required to successfully
“break” the agent can then be used as the protection interval.

Of course, as in obfuscation, there is still the question of how long it would take a
malicious host to break a messed-up agent. Hohl admits that this is an open question,
although he points out that we only need to concern ourselves with estimating the time it
would take for an automatic deobfuscator to break the code, arguing that a human alone
cannot possibly do the analysis by himself in time.

Deposited Keys. One mess-up technique proposed by Hohl but not by Collberg et al.
is that of deposited keys. Here, we encrypt parts of the agent, or remove some critical in-
formation needed by the agent and place it on a trusted server. As the agent runs, these
parts remain encrypted or missing. Then, when the agent reaches a certain state, it asks
the server for the decryption key or the missing parts. In this way, the host cannot analyze



B.5. TIME-LIMITED BLACKBOX SECURITY 191

the agent before running it and allowing it to come to the required state. (Note: there are
some similarities between this technique and that described in [33], which also involves
encrypting parts of the program, and decrypting it as the program runs.)

Expiration Dates. After creating an obfuscated version of the agent with the desired pro-
tection interval, the agent’s owner adds the protection interval to the current time to get an
expiration date. This expiration date is then included as part of a digitally signed certificate
that the agent carries and must present to any other party that it wants to communicate
with. Parties who receive such a communication request would first check the certificate
to determine if the agent is still valid. If the agent has already expired, communication is
refused it, on the assumption that the agent could already have been broken by the ma-
licious host and is thus untrustable. (Note that even if the agent is broken, the certificate
itself containing the expiration date still remains valid since it is cryptographically signed by
the agent’s creator and is thus presumably secure for a very long time.) In this way, even
if the agent is successfully broken after the expiration date, it cannot cause harm since it
cannot communicate with anyone else. (A presumption here is that all receiving parties
need to be able to get the correct global time in order to check the expiration date.)

If the agent to be sent out contains some token data – i.e., self-contained documents
that depend on the identity of the owner and can be traded independently of the issuer,
such as digital cash, secret keys, etc. – then the owner must also attach expiration dates
on these tokens and digitally sign them. He must do this before the agent is obfuscated
so that the obfuscation algorithms will also scramble the way the tokens are stored in the
agent and ensure that a malicious host cannot get the tokens before the protection interval.
Then, even if a malicious host successfully breaks an agent after the protection interval and
manages to get its tokens, no harm is done, since the tokens would already be expired and
unusable.

Finally, note that the expiration date protects the agent even if it migrates to another
host. And, if the agent needs to extend its life for some reason, then it can get “recharged”
by returning to its owner (or some other trusted host), which can then reobfuscate it using
different parameters, and then give it a new expiry date.

Limitations and Open Problems. At present, the main problem in implementing time-
limited blackbox security is the difficulty of estimating and guaranteeing the protection
interval of an obfuscated agent. However, Hohl also recognizes some other limitations
and open problems, including the following:

• There is a need for a standard global time that can be used to check expiration dates.
This requires either some mechanism for distributed clock synchronization, or com-
munication with a trusted timekeeper, which may increase communication overhead
and limit scalability.

• The types of tokens that can be protected using expiration dates are limited. For ex-
ample, tokens which need to be protected past the expiration date (e.g., the owner’s
long-term private keys) should not be carried by time-limited agents.
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• Obfuscation leads to longer transmission and execution time for agents, which may
limit the applicability of this technique to applications where speed is not a critical
factor.

• Time-limited blackbox security (and blackbox security in general) may still be sus-
ceptible to sabotage, where the host destroys parts of the agent, and blackbox test at-
tacks, where the host tries to deduce the internal workings of the agent by running
it many times on many different combinations of inputs. Hohl notes that we may
be able to protect against the former by embedding checksum code within the al-
gorithm. If the agent is truly a blackbox, then sabotage is likely to lead to random
damage, and can thus be detected by checking the checksums.

B.5.2 Critique

The idea of time-limited blackbox security is a very promising one. It aims to achieve the
same goals sought by Sander and Tschudin in mobile cryptography, but seems to offer a
much better chance at actually becoming implementable and usable in the near future.

Better Obfuscation, Deposited Keys, and Interactive Techniques. Hohl’s list of mess-
up algorithms is somewhat limited, and can benefit a lot from incorporating Collberg et
al.’s obfuscation transformations, especially if the latter can be parameterized as suggested
earlier.

At the same time, it would also be useful to further study and develop the idea of
deposited keys and similar techniques. This idea is different from the other techniques
discussed by Sander and Collberg in that it is interactive. This is both an advantage and a
disadvantage. The disadvantage is that it requires communication with a trusted server,
and can thus increase execution time and limit scalability. The advantage, however, is that
one can rely on more information-theoretic, and not just complexity-based security against
attacks. That is, if parts of the code are actually missing and cannot be predicted, then it is
not possible to analyze the code regardless of how much time an attacker may have.

Sander and Tschudin seem to think that the cost of extra communication outweighs the
advantages of interactive techniques, and thus consider only non-interactive techniques
for their mobile cryptography. There may be applications, however, where the extra com-
munication may be acceptable. For example, if an agent needs to communicate with the
server at certain points anyway, then we can piggyback the deposited keys with the nor-
mal communication packets at these points. In this way, we can use interactive techniques
to provide significantly more security at minimal additional cost.

Applications. In his paper, Hohl focuses exclusively on using time-limited blackbox se-
curity for protecting mobile agents against malicious hosts. It would be interesting to see
if his ideas can also be applied to other applications as well, such as the protection of pro-
grams and intellectual property from reverse engineering and piracy, and market-based
parallel computation.

As is, time-limited blackbox security does not seem directly applicable to the problem
of protecting software from piracy and intellectual property theft. Unlike mobile agents,
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which are typically sent out to other hosts for relatively specific and short tasks (e.g., to find
the best deal on an item), software has a much longer intended life and thus needs a longer
protection interval. Unfortunately, the task of guaranteeing a protection interval by using
obfuscation becomes much harder for longer intervals. This is because as the intervals get
longer, the human advantage over automatic deobfuscators becomes a more significant
factor. If a program’s time limit is in the order of seconds or minutes, for example, (a rea-
sonable time for a mobile agent to achieve its task), then it is safe to assume, as Hohl does,
that we only need to worry about automatic deobfuscators since it is simply impossible
for a human to process the information in such a short time. It takes time, for example,
for a human just to read the text of the program, let alone understand it and modify it. If
the program’s time limit needs to be extended to the order of months, or even just days,
however, then considering the human ability to deobfuscate code becomes necessary. This
is a much harder problem. While complexity analysis may be used to predict the time it
would take for certain deobfuscation algorithms to unravel a piece of obfuscated code, it
is much harder to analyze the human thinking process in a similar way.

It is also important to note that time-limited blackbox security applied to a program
does not mean that the program becomes unusable or self-destructs after the protection
interval. On the contrary, it means that we assume the user can do anything it wants with
the program after the protection interval. This presents another problem if the program
we are trying to protect is a commercial software package and not just an agent. With
an agent, we are able to guarantee that no harm is done after the protection interval by
simply preventing other parties from communicating with the agent. Thus, even if the
malicious host is able to understand all the algorithms contained in the agent, it cannot
use them. In contrast, with commercial software, if a malicious user is able to reverse
engineer a program after the protection interval, then harm has already been done. The
user can then, for example, rewrite the program, remove its security mechanisms, and then
sell copies of the modified program to others. Since many commercial programs do not
depend on communication with other parties to operate (e.g., word processors), there is no
way to prevent the broken programs from being used in the same way that we prevented
expired agents from being used.4

Fortunately, while time-limited blackbox security cannot be used for protecting intel-
lectual property, it can be useful for market-based parallel computing. The idea here is to
give the worker hosts obfuscated and time-limited code for performing part of the parallel
computation. The worker runs the code until the time limit, at which point, the server
gives it a new reobfuscated version of the same code (or the code for a different part of the
parallel computation). Here, as with mobile agents, the code given to the hosts is specific
to the current problem being solved, and has a relatively short lifetime. Thus, it should
be easier to predict and guarantee protection intervals for it. Furthermore, as with agents,
we can prevent malicious hosts from doing harm by simply ignoring any communication
requests or any results produced by expired code. Of course, the server should also take
care to change the data encoding, or to the change the computation itself, when giving new
code to the worker after the previous time limit expires. In this way, even if the malicious

4One way to make time-limited blackbox security work here may be to require even ordinarily non-
communicative programs to communicate with a server to operate. This leads to an idea similar to Sander
and Tschudin’s function hiding.
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worker understands the previous version of the code, he cannot use that knowledge to
affect the results of the new version.

It is important to note, however, that the cost of obfuscation is a more significant factor
when applying time-limited blackbox security to market-based parallel computation. The
need to periodically give new code to the workers incurs a certain amount of communica-
tion overhead. In the case of Java code, it can also mean a reduction in performance since
frequently changing the code prevents us from taking full advantage of just-in-time (JIT)
compilation techniques, which take a certain warm-up time, but speed up the code execu-
tion considerably. In applications where the correctness and security of the computation is
a major concern, however, the cost may be worth it. It may be better, for example, to have
the computation take 10 times longer but be guaranteed correct, for example, than to risk
having a small error due to one sabotaged worker invalidate and waste the work of 1000
other workers.

B.6 Suggestions for Future Research

The problem of protecting programs from attacks by malicious users is a relatively new
research area, and there is much space left for further exploration. Some ideas for further
research have already been mentioned, including the following:

• Parameterized Obfuscation. It would be useful to describe concrete ways not only
to select between different obfuscation transformations as Collberg et al. suggest, but
also to parameterize the individual transformations themselves. This (in addition to
Collberg et al.’s parameterized selection) would lead to being able to generate more
variations on a piece of code, and would be useful for implementing time-limited
obfuscation.

• Holding a cracking contest to measure effectivity. The main disadvantage of obfus-
cation is that unlike mathematically analyzable techniques such as encrypted com-
putation, it is hard to predict the effectivity of obfuscation transformations. One way
to empirically measure such effectivity may be to hold a publicized contest inviting
hackers to crack a certain obfuscated program and make it behave in a certain way.
This would be similar to the successful decryption contests held by RSA [126].

• Interactive techniques. Sander and Collberg consider mostly non-interactive tech-
niques, in order to avoid the extra cost incurred by requiring the program to com-
municate with the server. In cases where such communication is already required
anyway, then it might be profitable to apply interactive techniques, such as Hohl’s
deposited keys idea, to achieve much better security.

In addition to these, there are at least two other general ideas which deserve further
study: using redundancy and randomization, and combining encrypted computation and
obfuscation.
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B.6.1 Redundancy and Randomization

A potentially very useful technique is that of using redundancy and randomization as
a way of further enhancing security. For example, Sander and Tschudin use such tech-
niques when addressing the problems with undetachable signatures and function hiding
[127, 129]. Their solutions work by giving the host a new function where each coefficient is
replaced by a tuple containing elements not only from the original function, but also from
other randomly chosen functions whose answers are either known, or can easily be evalu-
ated. This makes it much harder for an attacker to understand the structure of the original
function or to generate a manipulated answer. Unless the attacker can deduce all the other
functions, and identify which one is the original one, any changes that the attacker makes
to the function is likely to cause an inconsistency in the answer that the owner can de-
tect. Similar techniques may be used in time-limited blackbox agents to implement the
embedded checksums suggested by Hohl as a protection against sabotage attacks.

Further research in this area may also benefit from the results of research in digital
watermarking, and specifically, of the watermarking of active intellectual property such as
software and hardware designs.5 The idea behind such watermarking is to embed some
property in the software or hardware design that is checkable by the owner using certain
key information, but unnoticeable to people without the required key information. The
watermark should also be resilient to attempts to remove it from the watermarked object.
Collberg et al. classify some common watermarking techniques for software and suggest
some of their own in [32]. A group at UCLA is also currently studying the watermarking
of hardware designs and solutions to graph theory problems [78, 84, 147].

Most watermarking techniques are designed primarily as protection against intellec-
tual property theft, and thus probably cannot be applied directly in their present form to
the problem of hiding checksum computations in blackbox code. However, some ideas
from these techniques may be helpful. One technique presented in [84], for example, pro-
tects an FPGA design by randomly selecting a number of normally invisible (internal)
nodes to be made visible in addition to many more normally visible nodes. This allows
the owner to check for design theft, since the chance that another honest designer would
come up with a design that includes not only the normally visible nodes, but also the same
set of normally invisible nodes is very small. While this exact implementation may not
be directly applicable to blackbox security, similar techniques involving the addition of a
randomized set of unnecessary information may be useful.

Another example of a watermarking technique that may be useful is that of constraint-
based watermarking [78]. Here, additional constraints are added to the original problem
based on a certain private key. A solution is then generated to fulfill these and the origi-
nal constraints. Because of the additional constraints, the resulting solution space would
be restricted. Checking for the watermark can then be done by checking if a certain so-
lution satisfies the additional constraints. If the original solution space is large, and the
constraints are chosen randomly,6 then the chances of an honest designer coming up with
his own solution to the original problem which also happens to satisfy the extra constraints
will be small.

5as opposed to the watermarking of artifacts such as digital images.
6but carefully, to avoid constraining the problem too much that it becomes unsolvable.
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A similar technique may be used for protecting mobile agents and market-based par-
allel computing systems against sabotage by malicious hosts. The idea is to ask the hosts
to solve a harder (more constrained) problem whose answers will have properties that the
server can easily check. Thus, if a host’s answer does not contain the desired property, we
can assume that it did not run the code it was given correctly. Sander and Tschudin’s idea
of using tuples may be considered one example of this idea.

B.6.2 Combining Encrypted Computation and Obfuscation

Finally, it would also be interesting to find ways to combine the ideas of encrypted com-
putation and obfuscation to get better security.

In looking for such solutions, it would probably be helpful to assume that the server
expects to receive encrypted data from the host, and the host does not need to understand
the results it produces. This is because allowing the host to understand the meaning of
even just the results makes the scheme susceptible to many different learning attacks such
as interpolation and the coefficient attack, noted earlier in Sect. B.3.2. Fortunately, this
assumption is not too restricting. Although it does not allow us to protect commercial
software from piracy (since commercial software in general are designed to produce un-
encrypted data for the host’s use), it can still be used in mobile agent applications, and
in market-based parallel computation, where the host does not need to understand the
results generated by the code.

Given this assumption, some possible approaches include: obfuscating encrypted func-
tions, using encryption as a part of the obfuscation process, and using obfuscation trans-
forms as encryption schemes.

Obfuscating Encrypted Functions

One straightforward way to combine encrypted computation and obfuscation is simply
to first use encrypted computation to encrypt the function to be computed (assuming it
is a polynomial or rational function), and then obfuscate the program afterwards. By ob-
scuring the workings of the PLUS operator, and hiding the coefficients, this would add an
extra layer of security and make it harder (though not impossible) for a malicious host to
take advantage of attacks such as coefficient attacks, which are based on knowledge of the
encrypted coefficient values and the structure of the function to be evaluated.

Encryption as Part of the Obfuscation Process.

It may also be possible somehow to use encryption techniques to determine the reorder-
ing and regrouping of the program’s code and data. In [32], for example, Collberg et al.
talk about watermarking software by taking two secret primes, encoding their product as
graph structure, and hiding the structure in the program heap among other structures. It is
not yet clear, however, if and how this idea can be applied to achieving blackbox security.
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Figure B-5: CED using obfuscation as an encryption scheme.

Obfuscation as Encryption

Finally, a most intriguing and promising possibility is that of using obfuscation itself as a
form of encryption.

Implementation. Suppose, for example, that we consider data obfuscation transforma-
tions, such as changing data encoding, splitting and merging variables, and reordering
and restructuring arrays and other data structures, as encryption schemes. Then, we can
do computing with encrypted data (CED) as shown in Fig. B-5. Here, Alice chooses two
secret “keys” or parameters and uses them to select (or generate) two data obfuscation
schemes, E1 and E2. E1 is used for encoding the input data, while E2 is used for encoding
the output. Using these keys, together with a code obfuscation parameter, keyc (for added
variety), Alice then generates a program (step 1), E1,2,c(P (f(x)), which encodes and stores
x according to E1 and works on it to produce a result encoded according to E2 without
revealing the original value of x. Alice gives this program to Bob (step 2), who runs it on
his own machine to produce the encoded answer E2(f(x)) (step 3). Bob then returns the
answer to Alice, who runs the decoding program P (E2

−1) on Bob’s result to get the orig-
inal value of f(x) (step 4). As in the CED example described in Sect. B.3.2, Bob only sees
encrypted forms of the data and the code, and thus never learns x or f(x).

While this scheme is very similar to those described in Sect. B.3.2, there are a few im-
portant differences.

First, unlike the techniques in Sect. B.3.2, this scheme is not limited to using algebraic
functions and algorithms to perform the encrypted (homomorphic) operations. Thus,
while no one has yet found a traditional encryption scheme where one can perform both the
PLUS and MULT operations homorphically – let alone perform generalized computation
– doing so is relatively straightforward with obfuscation. Since the program P (E1,2,c(f(x))
can be any program that can be expressed as a sequence of machine instructions, we know
that we can implement any operator that we need as long as it is computable.

Second, note that in Sander’s and Tschudin’s schemes, the homomorphic operators
PLUS and MIXEDMULT where fixed and well-known, even to Bob. It is only the data’s
encrypted form that changes, based on the private key. In contrast, here, not only the data,
but also the code given to Bob, change depending on the private keys.

Finally, since P (E1,2,c(f(x)) is not limited to being mathematically describable and
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fixed, its operations do not have to be homomorphic. That is, as shown in Fig. B-5, the
encoding scheme for the result, E2, does not have to be the same as the encoding scheme
for the input E1. In Sander’s and Tschudin’s scheme, the PLUS operator had to be homo-
morphic because it was used many times on Bob’s side in the process of calculating the
polynomial. In fact, finding a way to do encrypted polynomial evaluation using just one
homomorphic operator (PLUS) was one of Sander and Tschudin’s major achievements,
since homomorphic operators, and schemes which support several of them, are generally
hard to find. If, as described above, however, we have complete freedom in writing the
encrypted program P (E1,2,c(f(x)), then limiting ourselves to homomorphic operators is
not necessary, and we may be able to get more flexibility and more security by allowing
the output to be encoded differently from the input.

Example. Figure B-6 shows an example. Here, Alice wants to hire Bob to compute the
following computation for her without allowing Bob to understand the computation,

a = b + c; b = b + 1; c = a * b;

As shown, she first chooses two different encoding schemes – E1 for the input, and E2

for the output – which scramble the data by adding random numbers to them and placing
them in an array in random order. Given these two schemes, she then generates a program,
P , to perform the desired computation using the new encodings, and gives this program to
Bob together with the encoded input array A. (Note that Alice can make it even harder for
Bob to understand the computation by employing more complex data encoding schemes
as well as applying code obfuscation transformations on P .) Bob then runs the program to
produce the output array B, which he returns to Alice. Finally, Alice computes the inverse
of E2 on B to get the desired values of a, b, and c.

By thus allowing Bob to see only encoded versions of the data and the code, Alice is
able to make it hard, or even impossible, for Bob to understand the computation. More-
over, unlike in traditional encrypted computation, Alice can have Bob perform arbitrary
secret computations for her, since all she needs to do is to rewrite the original computation
to work with the scrambled data. This example, for instance, shows Alice having Bob per-
form a secret computation using addition and multiplication operations without the need
for an algebraically homomorphic encryption scheme.
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Of course, since this scheme is based on obfuscation techniques, the problem of pre-
dicting its security remains a problem. There is one significant advantage here, however.
In most traditional applications of obfuscation, such as in protecting commercial software
programs, the obfuscated program has to receive unencoded data from the user, process
it, and then produce unencoded output. This means that even if most of the internal code
and data are obfuscated, there is still at least some code needed for converting between
the unencoded and encoded forms of the data. If Bob can identify and understand this
part of the code, he can understand the data encoding, and gain a much better chance of
understanding the code itself. In constrast, the scheme in Fig. B-6 never allows Bob to see
any data in unencoded form. Thus, even if he can understand how P works, he can never
be totally sure that his understanding is correct.

For example, suppose, using a process like the one to be described below, he is able to
analyze P and come to the conclusion that the code is performing a computation which
looks like:

a = b + c; b = b + 1; c = a * b;

He still cannot be sure of this analysis, since if the array orderings were slightly different,
the computation can also mean:

c = b + a; b = b + 1; a = c * b;

(with a and c swapped), which would have a different meaning if a and c are used in other
parts of the program. Of course, in reality, Bob’s job is even harder, since the constant
numbers added to the variables can be random, so he can never be sure whether each
statements involves constants, and if so, what their values are.

Caveats. It is important to note that although hiding the data encoding schemes from
Bob makes it much harder for Bob to understand the obfuscated program P , Bob may still
be able to break the code given some information about the code. For example, if he knows
that the pattern b = b + 1 is common in the program, and that other similar patterns such
as b = a + 1 or b = a + 3 are very rare, then he may be able to deduce that A[1] contains
an encoded version of the original b and B[1] will hold an encoded version of b + 1. If he
further knows that Alice has the habit of writing code such that statements with additions
and multiplications involving two variables never involve constants, then he may be able
to deduce the structure of the first and third statements, and then deduce the constants
in the encoding. Finally, by looking at other parts of the code, he may be able to deduce
that Alice is more likely to compute c=a*b than a=c*b and thus identify the proper array
ordering.

This problem is similar to that of old cryptographic techniques such as the substitution
cipher, which can be broken by noticing the frequencies of different encoded characters
and matching them with known frequencies of letters in the original language. Modern-
day cryptographers have gotten around this problem by developing techniques designed
to produce random-looking ciphertexts without the statistical patterns of the original lan-
guage. Applying the same idea to obfuscation, this means that we should choose data and
code obfuscation transformation schemes that would hide statistical patterns in the origi-
nal code. Ideally, an obfuscated program P , should be the possible result of many different
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original code sequences, each with equal probability. In this way, even if Bob is able to gen-
erate all possible deobfuscations of P , he still will not know which one is the correct one,
since they are equally likely.

A further way to mask statistical patterns is to interleave different and independent
computations. For example, to prevent Bob from deducing the structure of the code above,
Alice may choose to interleave it with the code for solving another problem where b is not
always incremented by 1, multiplications and additions can involve constants as well as
variables, and a is more likely than c to contain a product.

In general, suppose Alice has two different and independent computational problems
C1 and C2, which taken several steps to compute. She can interleave the computations
either:

• in space – at each step, give Bob a program with the code for a step in C1 and a step
in C2.

• in time – at each step, give Bob a program with the code for a step in either C1 or C2,
but without letting Bob know which one.

• or both – at each step, give Bob a program which may perform zero or more steps
from either C1 or C2.

Interleaving code in either space or time helps hide statistical patterns in C1 and C2 if these
have different patterns. Interleaving computations in time makes analysis even harder by
obscuring the data flow in the code. Suppose for example that a program Bob receives
for a step writes to a variable a, and the program for the next step reads and performs
computation on a. Bob cannot conclude anything from this since the second program may
actually belong to a totally independent computation where a has a different meaning and
value.

Summary. Whether these and other techniques would be enough to make obfuscation
feasible as a way of doing encrypted computation is still an open question, but it looks
very promising at the moment and thus deserves further investigation. At the very least,
hiding both the input and output data encoding schemes from the host (Bob), will almost
certainly make deobfuscation significantly more difficult, and can thus be used as a way
of increasing the protection intervals needed in time-limited blackbox security.

B.7 Conclusions

In this paper, we discussed different ways of protecting programs such as commercial soft-
ware and mobile agents from attempts by malicious users to understand, modify, and ma-
nipulate their behavior. Using mathematical principles, encrypted computation promises
the potential of finding provably secure ways to hide the details of a function from the host
executing it, but currently works only for a few specialized functions such as polynomial
evaluation, and seems to be too inefficient to be practical in real applications. Obfuscation
offers more versatility and efficiency, but its security properties are harder to analyze due
to the heuristic nature of both the obfuscation and deobfuscation processes. Time-limited
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blackbox security recognizes this limitation in obfuscation by preventing mobile code from
communicating with other parties after a certain protection interval based on an estimate
of the time it would take to deobfuscate the code.

All these techniques are relatively new, and provide a lot of opportunity for further
research. Some ideas worth looking into include parameterized obfuscation, interactive
techniques, using redundancy and randomization techniques such as checksums and wa-
termarks, and combining encrypted computation and obfuscation. In the end, a successful
solution to this problem will probably be achieved by combining all these techniques –
that is, by using parameterized obfuscation as an encryption scheme (with randomized
parameters as the private keys) to prevent the malicious host from understanding and ma-
nipulating the code, and by using checksums and watermarks to detect attempts to change
the code.
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